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 [http://unitary.fund]PyMatching is a fast Python/C++ library for decoding quantum error correcting (QEC) codes using the Minimum Weight
Perfect Matching (MWPM) decoder.
Given the syndrome measurements from a quantum error correction circuit, the MWPM decoder finds the most probable set
of errors, given the assumption that error mechanisms are independent, as well as graphlike (each error causes
either one or two detection events).
The MWPM decoder is the most popular decoder for decoding surface codes [https://arxiv.org/abs/quant-ph/0110143],
and can also be used to decode various other code families, including
subsystem codes [https://arxiv.org/abs/1207.1443],
honeycomb codes [https://quantum-journal.org/papers/q-2021-10-19-564/] and
2D hyperbolic codes [https://arxiv.org/abs/1506.04029].

Version 2 includes a new implementation of the blossom algorithm which is 100-1000x faster than previous versions
of PyMatching.
PyMatching can be configured using arbitrary weighted graphs, with or without a boundary, and can be combined with
Craig Gidney’s Stim [https://github.com/quantumlib/Stim] library to simulate and decode error correction circuits
in the presence of circuit-level noise. The sinter [https://pypi.org/project/sinter/] package combines Stim and
PyMatching to perform fast, parallelised monte-carlo sampling of quantum error correction circuits.

Documentation for PyMatching can be found at: pymatching.readthedocs.io [https://pymatching.readthedocs.io/en/stable/]

To see how stim, sinter and pymatching can be used to estimate the threshold of an error correcting code with
circuit-level noise, try out the stim getting started notebook [https://github.com/quantumlib/Stim/blob/main/doc/getting_started.ipynb].


The new >100x faster implementation for Version 2

Version 2 features a new implementation of the blossom algorithm, which I wrote with Craig Gidney.
Our new implementation, which we refer to as the sparse blossom algorithm, can be seen as a generalisation of the
blossom algorithm to handle the decoding problem relevant to QEC.
We solve the problem of finding minimum-weight paths between detection events in a detector graph
directly, which avoids the need to use costly all-to-all Dijkstra searches to find a MWPM in a derived
graph using the original blossom algorithm.
The new version is also exact - unlike previous versions of PyMatching, no approximation is made.

Our new implementation is over 100x faster than previous versions of PyMatching, and is
over 100,000x faster than NetworkX (benchmarked with surface code circuits). At 0.1% circuit-noise, PyMatching can
decode both X and Z basis measurements of surface code circuits up to distance 17 in under 1 microsecond per round
of syndrome extraction on a single core. Furthermore, the runtime is roughly linear in the number
of nodes in the graph.

The plot below compares the performance of PyMatching v2 with the previous
version (v0.7) as well as with NetworkX for decoding surface code circuits with circuit-level depolarising noise.
All decoders were run on a single core of an M1 processor, processing both the X and Z basis measurements.
The equations T=N^x in the legend (and plotted as dashed lines) are
obtained from a fit to the same dataset for
distance > 10, where N is the number of detectors (nodes) per round, and T is the decoding time per round.
See the benchmarks [https://github.com/oscarhiggott/PyMatching/raw/master/benchmarks] folder in the repository
for the data and stim circuits, as well as additional benchmarks.
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 [https://github.com/oscarhiggott/PyMatching/raw/master/benchmarks/surface_codes/surface_code_rotated_memory_x_p_0.001_d_5_7_9_13_17_23_29_39_50_both_bases/pymatching_v0.7_vs_pymatching_v2_vs_networkx_timing_p=0.001_per_round_both_bases_decoded.png]Sparse blossom is conceptually similar to the approach described in this paper [https://arxiv.org/abs/1307.1740]
by Austin Fowler, although our approach differs in many of the details (which will be explained in our upcoming paper).
There are even more similarities with the very nice independent work by Yue Wu, who recently released the
fusion-blossom [https://pypi.org/project/fusion-blossom/] library.
One of the differences with our approach is that fusion-blossom grows the exploratory regions of alternating trees
in a similar way to how clusters are grown in Union-Find, whereas our approach instead progresses along a timeline,
and uses a global priority queue to grow alternating trees.
Yue also has a paper coming soon, so stay tuned for that as well.



Installation

The latest version of PyMatching can be downloaded and installed from PyPI [https://pypi.org/project/PyMatching/]
with the command:

pip install pymatching --upgrade







Usage

PyMatching can load matching graphs from a check matrix, a stim.DetectorErrorModel, a networkx.Graph, a
retworkx.PyGraph or by adding edges individually with pymatching.Matching.add_edge and
pymatching.Matching.add_boundary_edge.


Decoding Stim circuits

PyMatching can be combined with Stim [https://github.com/quantumlib/Stim]. Generally, the easiest and fastest way to
do this is using sinter [https://pypi.org/project/stim/] (use v1.10.0 or later), which uses PyMatching and Stim to run
parallelised monte carlo simulations of quantum error correction circuits.
However, in this section we will use Stim and PyMatching directly, to demonstrate how their Python APIs can be used.
To install stim, run pip install stim --upgrade.

First, we generate a stim circuit. Here, we use a surface code circuit included with stim:

import numpy as np
import stim
import pymatching
circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
                                 distance=5,
                                 rounds=5,
                                 after_clifford_depolarization=0.005)





Next, we use stim to generate a stim.DetectorErrorModel (DEM), which is effectively a
Tanner graph [https://en.wikipedia.org/wiki/Tanner_graph] describing the circuit-level noise model.
By setting decompose_errors=True, stim decomposes all error mechanisms into edge-like error
mechanisms (which cause either one or two detection events).
This ensures that our DEM is graphlike, and can be loaded by pymatching:

model = circuit.detector_error_model(decompose_errors=True)
matching = pymatching.Matching.from_detector_error_model(model)





Next, we will sample 1000 shots from the circuit. Each shot (a row of shots) contains the full syndrome (detector
measurements), as well as the logical observable measurements, from simulating the noisy circuit:

sampler = circuit.compile_detector_sampler()
syndrome, actual_observables = sampler.sample(shots=1000, separate_observables=True)





Now we can decode! We compare PyMatching’s predictions of the logical observables with the actual observables sampled
with stim, in order to count the number of mistakes and estimate the logical error rate:

num_errors = 0
for i in range(syndrome.shape[0]):
    predicted_observables = matching.decode(syndrome[i, :])
    num_errors += not np.array_equal(actual_observables[i, :], predicted_observables)

print(num_errors)  # prints 8





As of PyMatching v2.1.0, you can use matching.decode_batch to decode a batch of shots instead.
Since matching.decode_batch iterates over the shots in C++, it’s faster than iterating over calls
to matching.decode in Python. The following cell is therefore a faster
equivalent to the cell above:

predicted_observables = matching.decode_batch(syndrome)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))

print(num_errors)  # prints 8







Loading from a parity check matrix

We can also load a pymatching.Matching object from a binary
parity check matrix [https://en.wikipedia.org/wiki/Parity-check_matrix], another representation of a Tanner graph.
Each row in the parity check matrix H corresponds to a parity check, and each column corresponds to an
error mechanism.
The element H[i,j] of H is 1 if parity check i is flipped by error mechanism j, and 0 otherwise.
To be used by PyMatching, the error mechanisms in H must be graphlike.
This means that each column must contain either one or two 1s (if a column has a single 1, it represents a half-edge
connected to the boundary).

We can give each edge in the graph a weight, by providing PyMatching with a weights numpy array.
Element weights[j] of the weights array sets the edge weight for the edge corresponding to column j of H.
If the error mechanisms are treated as independent, then we typically want to set the weight of edge j to
the log-likelihood ratio log((1-p_j)/p_j), where p_j is the error probability associated with edge j.
With this setting, PyMatching will find the most probable set of error mechanisms, given the syndrome.

With PyMatching configured using H and weights, decoding a binary syndrome vector syndrome (a numpy array
of length H.shape[0]) corresponds to finding a set of errors defined in a binary predictions vector
satisfying H@predictions % 2 == syndrome while minimising the total solution weight predictions@weights.

In quantum error correction, rather than predicting which exact set of error mechanisms occurred, we typically want to
predict the outcome of logical observable measurements, which are the parities of error mechanisms.
These can be represented by a binary matrix observables. Similar to the check matrix, observables[i,j] is 1 if
logical observable i is flipped by error mechanism j.
For example, suppose our syndrome syndrome, was the result of a set of errors noise (a binary array of
length H.shape[1]), such that syndrome = H@noise % 2.
Our decoding is successful if observables@noise % 2 == observables@predictions % 2.

Putting this together, we can decode a distance 5 repetition code as follows:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching
H = csc_matrix([[1, 1, 0, 0, 0],
                 [0, 1, 1, 0, 0],
                 [0, 0, 1, 1, 0],
                 [0, 0, 0, 1, 1]])
weights = np.array([4, 3, 2, 3, 4])   # Set arbitrary weights for illustration
matching = pymatching.Matching(H, weights=weights)
prediction = matching.decode(np.array([0, 1, 0, 1]))
print(prediction)  # prints: [0 0 1 1 0]
# Optionally, we can return the weight as well:
prediction, solution_weight = matching.decode(np.array([0, 1, 0, 1]), return_weight=True)
print(prediction)  # prints: [0 0 1 1 0]
print(solution_weight)  # prints: 5.0





And in order to estimate the logical error rate for a physical error rate of 10%, we can sample
as follows:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching
H = csc_matrix([[1, 1, 0, 0, 0],
                [0, 1, 1, 0, 0],
                [0, 0, 1, 1, 0],
                [0, 0, 0, 1, 1]])
observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights)
num_shots = 1000
num_errors = 0
for i in range(num_shots):
    noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
    syndrome = H@noise % 2
    prediction = matching.decode(syndrome)
    predicted_observables = observables@prediction % 2
    actual_observables = observables@noise % 2
    num_errors += not np.array_equal(predicted_observables, actual_observables)
print(num_errors)  # prints 4





Note that we can also ask PyMatching to predict the logical observables directly, by supplying them
to the faults_matrix argument when constructing the pymatching.Matching object. This allows the decoder to make
some additional optimisations, that speed up the decoding procedure a bit. The following example uses this approach,
and is equivalent to the example above:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching

H = csc_matrix([[1, 1, 0, 0, 0],
                [0, 1, 1, 0, 0],
                [0, 0, 1, 1, 0],
                [0, 0, 0, 1, 1]])
observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights, faults_matrix=observables)
num_shots = 1000
num_errors = 0
for i in range(num_shots):
    noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
    syndrome = H@noise % 2
    predicted_observables = matching.decode(syndrome)
    actual_observables = observables@noise % 2
    num_errors += not np.array_equal(predicted_observables, actual_observables)

print(num_errors)  # prints 6





We’ll make one more optimisation, which is to use matching.decode_batch to decode the batch of shots, rather than
iterating over calls to matching.decode in Python:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching

H = csc_matrix([[1, 1, 0, 0, 0],
                [0, 1, 1, 0, 0],
                [0, 0, 1, 1, 0],
                [0, 0, 0, 1, 1]])
observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
num_shots = 1000
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights, faults_matrix=observables)
noise = (np.random.random((num_shots, H.shape[1])) < error_probability).astype(np.uint8)
shots = (noise @ H.T) % 2
actual_observables = (noise @ observables.T) % 2
predicted_observables = matching.decode_batch(shots)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
print(num_errors)  # prints 6





Instead of using a check matrix, the Matching object can also be constructed using
the `Matching.add_edge <https://pymatching.readthedocs.io/en/stable/api.html#pymatching.matching.Matching.add_edge>`_
and
`Matching.add_boundary_edge <https://pymatching.readthedocs.io/en/stable/api.html#pymatching.matching.Matching.add_boundary_edge>`_
methods, or by loading from a NetworkX or retworkx graph.

For more details on how to use PyMatching,
see the documentation [https://pymatching.readthedocs.io].




Attribution

A paper on our new implementation used in PyMatching version 2 (sparse blossom) will be published soon. In the meantime, please
cite:

@misc{pymatchingv2,
  author = {Higgott, Oscar and Gidney, Craig},
  title = {PyMatching v2},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/oscarhiggott/PyMatching}}
}





Note: the existing PyMatching paper [https://arxiv.org/abs/2105.13082] descibes the implementation in version 0.7 and
earlier of PyMatching (not v2).
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Toric code example

In this example, we’ll use PyMatching to estimate the threshold of the toric code under an independent noise model with perfect syndrome measurements. The decoding problem for the toric code is identical for \(X\)-type and \(Z\)-type errors, so we will only simulate decoding \(Z\)-type errors using \(X\)-type stabilisers in this example.

First, we will construct a check matrix \(H_X\) corresponding to the \(X\)-type stabilisers. Each element \(H_X[i,j]\) will be 1 if the \(i\)th \(X\) stabiliser acts non-trivially on the \(j\)th qubit, and is 0 otherwise.

We will construct \(H_X\) by taking the hypergraph product [https://arxiv.org/abs/0903.0566] of two repetition codes. The hypergraph product code construction \(HGP(H_1,H_2)\) takes as input the parity check matrices of two linear codes \(C_1:=\ker H_1\) and \(C_2:= \ker H_2\). The code \(HGP(H_1,H_2)\) is a CSS code with the check matrix for the \(X\) stabilisers given by


\[H_X=[H_1\otimes I_{n_2},I_{r_1}\otimes H_2^T]\]

and with the check matrix for the \(Z\) stabilisers given by


\[H_Z=[I_{n_1}\otimes H_2,H_1^T\otimes I_{r_2}]\]

where \(H_1\) has dimensions \(r_1\times n_1\), \(H_2\) has dimensions \(r_2\times n_2\) and \(I_l\) denotes the \(l\times l\) identity matrix.

Since we only need the \(X\) stabilisers of the toric code with lattice size L, we only need to construct \(H_X\), using the check matrix of a repetition code with length L for both \(H_1\) and \(H_2\):


[1]:





import numpy as np
import matplotlib.pyplot as plt
from scipy.sparse import hstack, kron, eye, csc_matrix, block_diag


def repetition_code(n):
    """
    Parity check matrix of a repetition code with length n.
    """
    row_ind, col_ind = zip(*((i, j) for i in range(n) for j in (i, (i+1)%n)))
    data = np.ones(2*n, dtype=np.uint8)
    return csc_matrix((data, (row_ind, col_ind)))


def toric_code_x_stabilisers(L):
    """
    Sparse check matrix for the X stabilisers of a toric code with
    lattice size L, constructed as the hypergraph product of
    two repetition codes.
    """
    Hr = repetition_code(L)
    H = hstack(
            [kron(Hr, eye(Hr.shape[1])), kron(eye(Hr.shape[0]), Hr.T)],
            dtype=np.uint8
        )
    H.data = H.data % 2
    H.eliminate_zeros()
    return csc_matrix(H)







From the Künneth theorem [https://en.wikipedia.org/wiki/K%C3%BCnneth_theorem], the \(X\) logical operators of the toric code are given by


\[\begin{split}L_X=\left(
  \begin{array}{cc}
  \mathcal{H}^1\otimes \mathcal{H}^0 & 0 \\
  0 & \mathcal{H}^0\otimes \mathcal{H}^1
\end{array} \right)\end{split}\]

where \(\mathcal{H}^0\) and \(\mathcal{H}^1\) are the zeroth and first cohomology groups of the length-one chain complex that has the repetition code parity check matrix as its boundary operator. We can construct this matrix with the following function:


[2]:





def toric_code_x_logicals(L):
    """
    Sparse binary matrix with each row corresponding to an X logical operator
    of a toric code with lattice size L. Constructed from the
    homology groups of the repetition codes using the Kunneth
    theorem.
    """
    H1 = csc_matrix(([1], ([0],[0])), shape=(1,L), dtype=np.uint8)
    H0 = csc_matrix(np.ones((1, L), dtype=np.uint8))
    x_logicals = block_diag([kron(H1, H0), kron(H0, H1)])
    x_logicals.data = x_logicals.data % 2
    x_logicals.eliminate_zeros()
    return csc_matrix(x_logicals)







Now that we have the \(X\) check matrix and \(X\) logicals of the toric code, we can use PyMatching to simulate its performance using the minimum-weight perfect matching decoder and an error model of our choice.

To do so, we first import the Matching class from PyMatching, and use it to construct a Matching object from the check matrix of the stabilisers:

from pymatching import Matching
matching=Matching(H)





Constructing the Matching object, while efficient, is often slower than the decoding step itself. As a result, it’s best to construct the Matching object only at the beginning of the experiment, and not before every use of the decoder, in order to obtain the best performance.

We also choose a number of trials, num_shots. For each trial, we simulate a \(Z\) error under an independent noise model, in which each qubit independently suffers a \(Z\) error with probability \(p\):

noise = np.random.binomial(1, p, H.shape[1])





Here, noise is a binary vector and noise[i] is 1 if qubit \(i\) suffers a \(Z\) error, and 0 otherwise.

The syndrome of the \(X\) stabilisers is then calculated from the dot product (modulo 2) with the \(X\) check matrix \(H\):

syndrome = H@noise % 2





We can now use PyMatching to infer the most probable individual error given the syndrome:

prediction = matching.decode(syndrome)





We use this to predict which logical X operators have been flipped:

predicted_logicals_flipped = logicals@prediction % 2





The actual logicals that were flipped are:

actual_logicals_flipped = logicals@noise % 2





Our decoder was successful if actual_logical_observables equals predicted_logical_observables.

Taken together, we obtain the following function num_decoding_failures that returns the number of logical errors after num_shots Monte Carlo trials, simulating an independent error model with error probability p, with the \(X\) stabiliser check matrix H and \(X\) logical matrix logicals:


[3]:





from pymatching import Matching

def num_decoding_failures_via_physical_frame_changes(H, logicals, error_probability, num_shots):
    matching = Matching.from_check_matrix(H, weights=np.log((1-error_probability)/error_probability))
    num_errors = 0
    for i in range(num_shots):
        noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
        syndrome = H@noise % 2
        prediction = matching.decode(syndrome)
        predicted_logicals_flipped = logicals@prediction % 2
        actual_logicals_flipped = logicals@noise % 2
        if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):
            num_errors += 1
    return num_errors







We can speed this up slightly by telling PyMatching about the logical operators matrix when we create the pymatching.Matching object, using the faults_matrix argument. By doing this, pymatching.Matching.decode directly predicts which logicals have been flipped. This is a bit faster, as it allows the decoder to make some more optimisations.


[4]:





def num_decoding_failures(H, logicals, p, num_shots):
    matching = Matching.from_check_matrix(H, weights=np.log((1-p)/p), faults_matrix=logicals)
    num_errors = 0
    for i in range(num_shots):
        noise = (np.random.random(H.shape[1]) < p).astype(np.uint8)
        syndrome = H@noise % 2
        predicted_logicals_flipped = matching.decode(syndrome)
        actual_logicals_flipped = logicals@noise % 2
        if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):
            num_errors += 1
    return num_errors







We can optimise the code a bit further by vectorising over the shots, using the Matching.decode_batch method. This method takes in a binary numpy array with dimensions (num_shots, syndrome_length), where syndrome_length should be large enough to include all detector nodes, and be no larger than the number of nodes (including boundary nodes). By vectorising, the iteration over shots is done in C++ rather than Python, which can be significantly faster when the decoding problem itself is easy.


[5]:





def num_decoding_failures_vectorised(H, logicals, error_probability, num_shots):
    matching = Matching.from_check_matrix(H, weights=np.log((1-p)/p), faults_matrix=logicals)
    noise = (np.random.random((num_shots, H.shape[1])) < error_probability).astype(np.uint8)
    shots = (noise @ H.T) % 2
    actual_observables = (noise @ logicals.T) % 2
    predicted_observables = matching.decode_batch(shots)
    num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
    return num_errors







Using this function, we can now estimate the threshold of the toric code by varying the error rate \(p\), for a range of lattice sizes \(L\):


[6]:





%%time

num_shots = 5000
Ls = range(4,14,4)
ps = np.linspace(0.01, 0.2, 9)
np.random.seed(2)
log_errors_all_L = []
for L in Ls:
    print("Simulating L={}...".format(L))
    Hx = toric_code_x_stabilisers(L)
    logX = toric_code_x_logicals(L)
    log_errors = []
    for p in ps:
        num_errors = num_decoding_failures_vectorised(Hx, logX, p, num_shots)
        log_errors.append(num_errors/num_shots)
    log_errors_all_L.append(np.array(log_errors))













Simulating L=4...
Simulating L=8...
Simulating L=12...
CPU times: user 1.41 s, sys: 19.8 ms, total: 1.43 s
Wall time: 1.43 s






Finally, let’s plot the results! We expect to see a threshold of around 10.3%, although a precise estimate requires using more trials, larger lattice sizes and scanning more values of \(p\):


[7]:





%matplotlib inline

plt.figure()
for L, logical_errors in zip(Ls, log_errors_all_L):
    std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
    plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))
plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);
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Noisy syndromes

In the presence of measurement errors, each syndrome measurement is repeated \(O(L)\) times, and decoding instead takes place over a 3D matching graph with an additional time dimension (see Section IV B of this paper [https://arxiv.org/abs/quant-ph/0110143]). The time dimension can be added to the matching graph by specifying the number of repetitions when constructing the matching object:

matching = Matching(H, repetitions=T)





where here \(T\) is the number of repetitions. For decoding, the difference syndrome should be supplied as an \(r\times T\) binary numpy matrix, where \(r\) is the number of checks (rows in \(H\)). The difference syndrome in time step \(t\) is the difference (modulo 2) between the syndrome measurement in time step \(t\) and \(t-1\), and ensures that any single measurement error results in two syndrome defects (at the endpoints of a timelike edge in the matching
graph). The last round of syndrome measurements should be free of measurement errors to ensure that the overall syndrome has even parity: when qubits are measured individually at the end of a computation then the final round of syndrome measurement is indeed error-free (stabilisers can be determined exactly in post-processing), however the overlapping recovery method [https://arxiv.org/abs/quant-ph/0110143] should be implemented when decoding must be completed before all qubits are measured.

The following example demonstrates decoding in the presence of measurement errors using a phenomenological error model. In this error model, in each round of measurements each qubit suffers an error with probability \(p\), and each syndrome is measured incorrectly with probability \(q\).


[8]:





def num_decoding_failures_noisy_syndromes(H, logicals, p, q, num_shots, repetitions):
    matching = Matching(H, weights=np.log((1-p)/p),
                repetitions=repetitions, timelike_weights=np.log((1-q)/q), faults_matrix=logicals)
    num_stabilisers, num_qubits = H.shape
    num_errors = 0
    for i in range(num_shots):
        noise_new = (np.random.rand(num_qubits, repetitions) < p).astype(np.uint8)
        noise_cumulative = (np.cumsum(noise_new, 1) % 2).astype(np.uint8)
        noise_total = noise_cumulative[:,-1]
        syndrome = H@noise_cumulative % 2
        syndrome_error = (np.random.rand(num_stabilisers, repetitions) < q).astype(np.uint8)
        syndrome_error[:,-1] = 0 # Perfect measurements in last round to ensure even parity
        noisy_syndrome = (syndrome + syndrome_error) % 2
        # Convert to difference syndrome
        noisy_syndrome[:,1:] = (noisy_syndrome[:,1:] - noisy_syndrome[:,0:-1]) % 2
        predicted_logicals_flipped = matching.decode(noisy_syndrome)
        actual_logicals_flipped = noise_total@logicals.T % 2
        if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):
            num_errors += 1
    return num_errors







We’ll now simulate the performance of the decoder for a range of lattice sizes \(L\) and physical error rate \(p\) (taking \(q=p\)) and estimate the threshold:


[9]:





%%time

num_shots = 3000
Ls = range(8,13,2)
ps = np.linspace(0.02, 0.04, 7)
log_errors_all_L = []
for L in Ls:
    print("Simulating L={}...".format(L))
    Hx = toric_code_x_stabilisers(L)
    logX = toric_code_x_logicals(L)
    log_errors = []
    for p in ps:
        num_errors = num_decoding_failures_noisy_syndromes(Hx, logX, p, p, num_shots, L)
        log_errors.append(num_errors/num_shots)
    log_errors_all_L.append(np.array(log_errors))













Simulating L=8...
Simulating L=10...
Simulating L=12...
CPU times: user 11.2 s, sys: 88 ms, total: 11.3 s
Wall time: 11 s






Plotting the results, we find a threshold of around 3%, consistent with the threshold of 2.9% found in this paper [https://arxiv.org/abs/quant-ph/0207088]:


[10]:





%matplotlib inline

plt.figure()
for L, logical_errors in zip(Ls, log_errors_all_L):
    std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
    plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))
plt.yscale("log")
plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);
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Simulating circuit-level noise

PyMatching can be combined with Stim [https://github.com/quantumlib/Stim] to decode in the presence of more realistic noise models, where errors can occur during any gate in the syndrome extraction circuit. To do this, you construct a Stim circuit for the noisy quantum error correction circuit you want to simulate (e.g. a toric code memory experiment). Stim can sample syndromes (detector measurement outcomes) from the circuit and also provides a DetectorErrorModel (essentially a
generalisation of a matching graph) which PyMatching uses to construct the Matching object for decoding the syndrome.

Note that the sinter [https://github.com/quantumlib/Stim/tree/main/glue/sample] package combines Stim and PyMatching and uses parallelisation over shots to run error correction simulations more efficiently. It also includes other tools (such as for plotting and analysing data). However, here we will use Stim and PyMatching directly to demonstrate how the APIs can be used.

We will use the surface code here (instead of the toric code), since surface code example circuits are already included with Stim. In general you should write your own circuits tailored to the research problem you are trying to solve, however the example circuits are useful for getting started. Here we will sample shots from surface code circuits over a range of lattice sizes and circuit-level error rates:


[11]:





%%time

import stim

num_shots = 20000
Ls = range(5,14,4)
ps = np.linspace(0.004, 0.01, 7)
log_errors_all_L = []
for L in Ls:
    print("Simulating L={}...".format(L))
    log_errors = []
    for p in ps:
        circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
                                        distance=L,
                                        rounds=L,
                                        after_clifford_depolarization=p,
                                        before_round_data_depolarization=p,
                                        after_reset_flip_probability=p,
                                        before_measure_flip_probability=p)
        model = circuit.detector_error_model(decompose_errors=True)
        matching = Matching.from_detector_error_model(model)
        sampler = circuit.compile_detector_sampler()
        syndrome, actual_observables = sampler.sample(shots=num_shots, separate_observables=True)
        predicted_observables = matching.decode_batch(syndrome)
        num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
        log_errors.append(num_errors/num_shots)
    log_errors_all_L.append(np.array(log_errors))













Simulating L=5...
Simulating L=9...
Simulating L=13...
CPU times: user 24.3 s, sys: 228 ms, total: 24.5 s
Wall time: 24.4 s






Now let’s plot the results:


[12]:





%matplotlib inline

plt.figure()
for L, logical_errors in zip(Ls, log_errors_all_L):
    std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
    plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))
plt.yscale("log")
plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);
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We see a threshold of around 0.7% for circuit-level depolarising noise in the surface code. For more examples of how to use Stim with PyMatching (e.g. to estimate the required size of a surface code circuit to achieve a given error rate), see the Stim documentation [https://github.com/quantumlib/Stim/tree/main/doc], including the getting started notebook.





            

          

      

      

    

  

    
      
          
            
  


Python API Documentation


Matching


	
class pymatching.matching.Matching(graph: Union[csc_matrix, ndarray, PyGraph, Graph, List[List[int]], stim.DetectorErrorModel, spmatrix] = None, weights: Union[float, ndarray, List[float]] = None, error_probabilities: Union[float, ndarray, List[float]] = None, repetitions: int = None, timelike_weights: Union[float, ndarray, List[float]] = None, measurement_error_probabilities: Union[float, ndarray, List[float]] = None, **kwargs)

	A class for constructing matching graphs and decoding using the minimum-weight perfect matching decoder.
The matching graph can be constructed using the Matching.add_edge and Matching.add_boundary_edge
methods. Alternatively, it can be loaded from a parity check matrix (a scipy.sparse matrix or numpy.ndarray
with one or two non-zero elements in each column), a NetworkX or retworkx graph, or from
a stim.DetectorErrorModel.


	Attributes

	
	boundary
	Return the indices of the boundary nodes.



	num_detectors
	The number of detectors in the matching graph.



	num_edges
	The number of edges in the matching graph



	num_fault_ids
	The number of fault IDs defined in the matching graph



	num_nodes
	The number of nodes in the matching graph









Methods







	add_boundary_edge(node[, fault_ids, weight, ...])

	Add an edge connecting node to the boundary



	add_edge(node1, node2[, fault_ids, weight, ...])

	Add an edge to the matching graph



	add_noise()

	Add noise by flipping edges in the matching graph with a probability given by the error_probility edge attribute.



	decode(z[, _legacy_num_neighbours, ...])

	Decode the syndrome z using minimum-weight perfect matching



	decode_batch(shots, *[, return_weights, ...])

	Decode from a 2D shots array containing a batch of syndrome measurements.



	decode_to_edges_array(syndrome)

	Decode the syndrome syndrome using minimum-weight perfect matching, returning the edges in the solution, given as pairs of detector node indices in a numpy array.



	decode_to_matched_dets_array(syndrome)

	Decode the syndrome syndrome using minimum-weight perfect matching, returning the pairs of matched detection events (or detection events matched to the boundary) as a 2D numpy array.



	decode_to_matched_dets_dict(syndrome)

	Decode the syndrome syndrome using minimum-weight perfect matching, returning a dictionary giving the detection event that each detection event was matched to (or None if it was matched to the boundary).



	draw()

	Draw the matching graph using matplotlib Draws the matching graph as a matplotlib graph.



	edges()

	Edges of the matching graph Returns a list of edges of the matching graph.



	ensure_num_fault_ids(min_num_fault_ids)

	Set the minimum number of fault ids in the matching graph.



	from_check_matrix(check_matrix[, weights, ...])

	Load a matching graph from a check matrix



	from_detector_error_model(model)

	Constructs a pymatching.Matching object by loading from a stim.DetectorErrorModel.



	from_detector_error_model_file(dem_path)

	Construct a pymatching.Matching by loading from a stim DetectorErrorModel file path.



	from_networkx(graph, *[, min_num_fault_ids])

	Returns a new pymatching.Matching object from a NetworkX graph



	from_stim_circuit(circuit)

	Constructs a pymatching.Matching object by loading from a stim.Circuit



	from_stim_circuit_file(stim_circuit_path)

	Construct a pymatching.Matching by loading from a stim circuit file path.



	get_boundary_edge_data(node)

	Returns the edge data associated with the boundary edge (node,).



	get_edge_data(node1, node2)

	Returns the edge data associated with the edge (node1, node2).



	has_boundary_edge(node)

	Returns True if the boundary edge (node,) is in the graph.



	has_edge(node1, node2)

	Returns True if edge (node1, node2) is in the graph.



	load_from_check_matrix([check_matrix, ...])

	Load a matching graph from a check matrix



	load_from_networkx(graph, *[, min_num_fault_ids])

	Load a matching graph from a NetworkX graph into a pymatching.Matching object



	load_from_retworkx(graph, *[, min_num_fault_ids])

	Load a matching graph from a retworkX graph



	set_boundary_nodes(nodes)

	Set boundary nodes in the matching graph.



	to_networkx()

	Convert to NetworkX graph Returns a NetworkX graph corresponding to the matching graph.



	to_retworkx()

	Convert to retworkx graph Returns a retworkx graph object corresponding to the matching graph.







	
__init__(graph: Union[csc_matrix, ndarray, PyGraph, Graph, List[List[int]], stim.DetectorErrorModel, spmatrix] = None, weights: Union[float, ndarray, List[float]] = None, error_probabilities: Union[float, ndarray, List[float]] = None, repetitions: int = None, timelike_weights: Union[float, ndarray, List[float]] = None, measurement_error_probabilities: Union[float, ndarray, List[float]] = None, **kwargs)

	Constructor for the Matching class


	Parameters

	
	graphscipy.spmatrix or numpy.ndarray or networkx.Graph or stim.DetectorErrorModel, optional
	The matching graph to be decoded with minimum-weight perfect
matching, given either as a binary parity check matrix (scipy sparse
matrix or numpy.ndarray), a NetworkX or retworkx graph, or a Stim DetectorErrorModel.
Each edge in the NetworkX or retworkx graph can have optional
attributes fault_ids, weight and error_probability.
fault_ids should be an int or a set of ints.
Each fault id corresponds to a self-inverse fault that is flipped when the
corresponding edge is flipped. These self-inverse faults could correspond to
physical Pauli errors (physical frame changes)
or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim
detector error model). The fault_ids attribute was previously named qubit_id in an
earlier version of PyMatching, and qubit_id is still accepted instead of fault_ids in order
to maintain backward compatibility.
Each weight attribute should be a non-negative float. If
every edge is assigned an error_probability between zero and one,
then the add_noise method can be used to simulate noise and
flip edges independently in the graph. By default, None



	weightsfloat or numpy.ndarray, optional
	If graph is given as a scipy or numpy array, weights gives the weights
of edges in the matching graph corresponding to columns of graph.
If weights is a numpy.ndarray, it should be a 1D array with length
equal to graph.shape[1]. If weights is a float, it is used as the weight for all
edges corresponding to columns of graph. By default None, in which case
all weights are set to 1.0
This argument was renamed from spacelike_weights in PyMatching v2.0, but
spacelike_weights is still accepted in place of weights for backward compatibility.



	error_probabilitiesfloat or numpy.ndarray, optional
	The probabilities with which an error occurs on each edge corresponding
to a column of the check matrix. If a
single float is given, the same error probability is used for each
edge. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in the check matrix. This parameter is only
needed for the Matching.add_noise method, and not for decoding.
By default None



	repetitionsint, optional
	The number of times the stabiliser measurements are repeated, if
the measurements are noisy. This option is only used if check_matrix is
provided as a check matrix, not a NetworkX graph. By default None



	timelike_weightsfloat, optional
	If check_matrix is given as a scipy or numpy array and repetitions>1,
timelike_weights gives the weight of timelike edges.
If a float is given, all timelike edges weights are set to
the same value. If a numpy array of size (check_matrix.shape[0],) is given, the
edge weight for each vertical timelike edge associated with the i`th check (row)
of `check_matrix is set to timelike_weights[i]. By default None, in which case all
timelike weights are set to 1.0



	measurement_error_probabilitiesfloat, optional
	If check_matrix is given as a scipy or numpy array and repetitions>1,
gives the probability of a measurement error to be used for
the add_noise method. If a float is given, all measurement
errors are set to the same value. If a numpy array of size (check_matrix.shape[0],) is given,
the error probability for each vertical timelike edge associated with the i`th check
(row) of `check_matrix is set to measurement_error_probabilities[i]. By default None



	**kwargs
	The remaining keyword arguments are passed to Matching.load_from_check_matrix if graph is a
check matrix.









Examples

>>> import pymatching
>>> import math
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids={0}, weight=0.1)
>>> m.add_edge(1, 2, fault_ids={1}, weight=0.15)
>>> m.add_edge(2, 3, fault_ids={2, 3}, weight=0.2)
>>> m.add_edge(0, 3, fault_ids={4}, weight=0.1)
>>> m.set_boundary_nodes({3})
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>





Matching objects can also be created from a check matrix (provided as a scipy.sparse matrix,
dense numpy array, or list of lists):
>>> import pymatching
>>> m = pymatching.Matching([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]])
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>






	
add_boundary_edge(node: int, fault_ids: Optional[Union[int, Set[int]]] = None, weight: float = 1.0, error_probability: Optional[float] = None, *, merge_strategy: str = 'disallow', **kwargs) → None

	Add an edge connecting node to the boundary


	Parameters

	
	node: int
	The index of the node to be connected to the boundary with a boundary edge



	fault_ids: set[int] or int, optional
	The IDs of any self-inverse faults which are flipped when the edge is flipped, and which should be tracked.
This could correspond to the IDs of physical Pauli errors that occur when this
edge flips (physical frame changes). Alternatively,
this attribute can be used to store the IDs of any logical observables that are
flipped when an error occurs on an edge (logical frame changes). By default None



	weight: float, optional
	The weight of the edge. The weight can be positive or negative, but its absolute value cannot exceed
the maximum absolute edge weight of 2**24-1=16,777,215. If the absolute value of the weight exceeds this
value, the edge will not be added to the graph and a warning will be raised. By default 1.0



	error_probability: float, optional
	The probability that the edge is flipped. This is used by the add_noise() method
to sample from the distribution defined by the matching graph (in which each edge
is flipped independently with the corresponding error_probability). By default None



	merge_strategy: str, optional
	Which strategy to use if the edge (node1, node2) is already in the graph. The available options
are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”. “disallow” raises a
ValueError if the edge (node1, node2) is already present. The “independent” strategy assumes that
the existing edge (node1, node2) and the edge being added represent independent error mechanisms, and
they are merged into a new edge with updated weights and error_probabilities accordingly (it is assumed
that each weight represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
the code has distance 2 if parallel edges have different fault_ids anyway). The “smallest-weight” strategy
keeps only the new edge if it has a smaller weight than the existing edge, otherwise the graph is left
unchanged. The “keep-original” strategy keeps only the existing edge, and ignores the edge being added.
The “replace” strategy always keeps the edge being added, replacing the existing edge.
By default, “disallow”









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> print(m.num_edges)
2
>>> print(m.num_nodes)
2
>>> import math
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0, fault_ids={0}, weight=math.log((1-0.05)/0.05), error_probability=0.05)
>>> m.add_edge(0, 1, fault_ids={1}, weight=math.log((1-0.1)/0.1), error_probability=0.1)
>>> m.add_boundary_edge(1, fault_ids={2}, weight=math.log((1-0.2)/0.2), error_probability=0.2)
>>> m
<pymatching.Matching object with 2 detectors, 0 boundary nodes, and 3 edges>
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0, fault_ids=0, weight=2)
>>> m.add_boundary_edge(0, fault_ids=1, weight=1, merge_strategy="smallest-weight")
>>> m.add_boundary_edge(0, fault_ids=2, weight=3, merge_strategy="smallest-weight")
>>> m.edges()
[(0, None, {'fault_ids': {1}, 'weight': 1.0, 'error_probability': -1.0})]
>>> m.boundary  # Using Matching.add_boundary_edge, no boundary nodes are added (the boundary is a virtual node)
set()










	
add_edge(node1: int, node2: int, fault_ids: Optional[Union[int, Set[int]]] = None, weight: float = 1.0, error_probability: Optional[float] = None, *, merge_strategy: str = 'disallow', **kwargs) → None

	Add an edge to the matching graph


	Parameters

	
	node1: int
	The index of node1 in the new edge (node1, node2)



	node2: int
	The index of node2 in the new edge (node1, node2)



	fault_ids: set[int] or int, optional
	The indices of any self-inverse faults which are flipped when the edge is flipped, and which should be tracked.
This could correspond to the IDs of physical Pauli errors that occur when this
edge flips (physical frame changes). Alternatively,
this attribute can be used to store the IDs of any logical observables that are
flipped when an error occurs on an edge (logical frame changes). In earlier versions of PyMatching, this
attribute was instead named qubit_id (since for CSS codes and physical frame changes, there can be
a one-to-one correspondence between each fault ID and physical qubit ID). For backward
compatibility, qubit_id can still be used instead of fault_ids as a keyword argument.
By default None



	weight: float, optional
	The weight of the edge. The weight can be positive or negative, but its absolute value cannot exceed
the maximum absolute edge weight of 2**24-1=16,777,215. If the absolute value of the weight exceeds this
value, the edge will not be added to the graph and a warning will be raised. By default 1.0



	error_probability: float, optional
	The probability that the edge is flipped. This is used by the add_noise() method
to sample from the distribution defined by the matching graph (in which each edge
is flipped independently with the corresponding error_probability). By default None



	merge_strategy: str, optional
	Which strategy to use if the edge (node1, node2) is already in the graph. The available options
are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”. “disallow” raises a
ValueError if the edge (node1, node2) is already present. The “independent” strategy assumes that
the existing edge (node1, node2) and the edge being added represent independent error mechanisms, and
they are merged into a new edge with updated weights and error_probabilities accordingly (it is assumed
that each weight represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
the code has distance 2 if parallel edges have different fault_ids anyway). The “smallest-weight” strategy
keeps only the new edge if it has a smaller weight than the existing edge, otherwise the graph is left
unchanged. The “keep-original” strategy keeps only the existing edge, and ignores the edge being added.
The “replace” strategy always keeps the edge being added, replacing the existing edge.
By default, “disallow”









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> print(m.num_edges)
2
>>> print(m.num_nodes)
3
>>> import math
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids=2, weight=math.log((1-0.05)/0.05), error_probability=0.05)
>>> m.add_edge(1, 2, fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1)
>>> m.add_edge(2, 0, fault_ids={1, 2}, weight=math.log((1-0.2)/0.2), error_probability=0.2)
>>> m
<pymatching.Matching object with 3 detectors, 0 boundary nodes, and 3 edges>
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids=0, weight=2)
>>> m.add_edge(0, 1, fault_ids=1, weight=1, merge_strategy="smallest-weight")
>>> m.add_edge(0, 1, fault_ids=2, weight=3, merge_strategy="smallest-weight")
>>> m.edges()
[(0, 1, {'fault_ids': {1}, 'weight': 1.0, 'error_probability': -1.0})]










	
add_noise() → Optional[Tuple[ndarray, ndarray]]

	Add noise by flipping edges in the matching graph with
a probability given by the error_probility edge attribute.
The error_probability must be set for all edges for this
method to run, otherwise it returns None.
All boundary nodes are always given a 0 syndrome.


	Returns

	
	numpy.ndarray of dtype int
	Noise vector (binary numpy int array of length self.num_fault_ids)



	numpy.ndarray of dtype int
	Syndrome vector (binary numpy int array of length
self.num_detectors if there is no boundary, or self.num_detectors+len(self.boundary)
if there are boundary nodes)














	
property boundary: Set[int]

	Return the indices of the boundary nodes.
Note that this property is a copy of the set of boundary nodes.
In-place modification of the set Matching.boundary will not
change the boundary nodes of the matching graph - boundary nodes should
instead be set or updated using the Matching.set_boundary_nodes method.


	Returns

	
	set of int
	The indices of the boundary nodes














	
decode(z: Union[ndarray, List[int]], _legacy_num_neighbours: Optional[int] = None, _legacy_return_weight: Optional[bool] = None, *, return_weight: bool = False, **kwargs) → Union[ndarray, Tuple[ndarray, int]]

	Decode the syndrome z using minimum-weight perfect matching


	Parameters

	
	znumpy.ndarray
	A binary syndrome vector to decode. The number of elements in
z should equal the number of nodes in the matching graph. If
z is a 1D array, then z[i] is the syndrome at node i of
the matching graph. If z is 2D then z[i,j] is the difference
(modulo 2) between the (noisy) measurement of stabiliser i in time
step j+1 and time step j (for the case where the matching graph is
constructed from a check matrix with repetitions>1).



	_legacy_num_neighbours: int
	The num_neighbours argument available in PyMatching versions 0.x.x is not
available in PyMatching v2.0.0 or later, since it introduced an approximation
that is not relevant or required in the new version 2 implementation.
Providing num_neighbours as this second positional argument will raise an exception in a
future version of PyMatching.



	_legacy_return_weight: bool
	return_weight used to be available as this third positional argument, but should now
be set as a keyword argument. In a future version of PyMatching, it will only be possible
to provide return_weight as a keyword argument.



	return_weightbool, optional
	If return_weight==True, the sum of the weights of the edges in the
minimum weight perfect matching is also returned. By default False







	Returns

	
	correctionnumpy.ndarray or list[int]
	A 1D numpy array of ints giving the minimum-weight correction operator as a
binary vector. The number of elements in correction is one greater than
the largest fault ID. The ith element of correction is 1 if the
minimum-weight perfect matching (MWPM) found by PyMatching contains an odd
number of edges that have i as one of the fault_ids, and is 0 otherwise.
If each edge in the matching graph is assigned a unique integer in its
fault_ids attribute, then the locations of nonzero entries in correction
correspond to the edges in the MWPM. However, fault_ids can instead be used,
for example, to store IDs of the physical or logical frame changes that occur
when an edge flips (see the documentation for Matching.add_edge for more information).



	weightfloat
	Present only if return_weight==True.
The sum of the weights of the edges in the minimum-weight perfect
matching.







	Raises

	
	ValueError
	If there is no error consistent with the provided syndrome. Occurs if the syndrome has odd parity in the
support of a connected component without a boundary.









Examples

>>> import pymatching
>>> import numpy as np
>>> check_matrix = np.array([[1, 1, 0, 0, 0],
...               [0, 1, 1, 0, 0],
...               [0, 0, 1, 1, 0],
...               [0, 0, 0, 1, 1]])
>>> m = pymatching.Matching(check_matrix)
>>> z = np.array([0, 1, 0, 0])
>>> m.decode(z)
array([1, 1, 0, 0, 0], dtype=uint8)





Each bit in the correction provided by Matching.decode corresponds to a
fault_ids. The index of a bit in a correction corresponds to its fault_ids.
For example, here an error on edge (0, 1) flips fault_ids 2 and 3, as
inferred by the minimum-weight correction:

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids={2, 3})
>>> m.add_edge(1, 2, fault_ids=1)
>>> m.add_edge(2, 0, fault_ids=0)
>>> m.decode([1, 1, 0])
array([0, 0, 1, 1], dtype=uint8)





To decode with a phenomenological noise model (qubits and measurements both suffering
bit-flip errors), you can provide a check matrix and number of syndrome repetitions to
construct a matching graph with a time dimension (where nodes in consecutive time steps
are connected by an edge), and then decode with a 2D syndrome
(dimension 0 is space, dimension 1 is time):

>>> import pymatching
>>> import numpy as np
>>> np.random.seed(0)
>>> check_matrix = np.array([[1, 1, 0, 0],
...               [0, 1, 1, 0],
...               [0, 0, 1, 1]])
>>> m = pymatching.Matching(check_matrix, repetitions=5)
>>> data_qubit_noise = (np.random.rand(4, 5) < 0.1).astype(np.uint8)
>>> print(data_qubit_noise)
[[0 0 0 0 0]
 [0 0 0 0 0]
 [0 0 0 0 1]
 [1 1 0 0 0]]
>>> cumulative_noise = (np.cumsum(data_qubit_noise, 1) % 2).astype(np.uint8)
>>> syndrome = check_matrix@cumulative_noise % 2
>>> print(syndrome)
[[0 0 0 0 0]
 [0 0 0 0 1]
 [1 0 0 0 1]]
>>> syndrome[:,:-1] ^= (np.random.rand(3, 4) < 0.1).astype(np.uint8)
>>> # Take the parity of consecutive timesteps to construct a difference syndrome:
>>> syndrome[:,1:] = syndrome[:,:-1] ^ syndrome[:,1:]
>>> m.decode(syndrome)
array([0, 0, 1, 0], dtype=uint8)










	
decode_batch(shots: ndarray, *, return_weights: bool = False, bit_packed_shots: bool = False, bit_packed_predictions: bool = False) → Union[ndarray, Tuple[ndarray, ndarray]]

	Decode from a 2D shots array containing a batch of syndrome measurements. A faster
alternative to using pymatching.Matching.decode and iterating over the shots in Python.


	Parameters

	
	shotsnp.ndarray
	A 2D numpy array of shots to decode, of dtype=np.uint8.

If bit_packed_shots==False, then
shots should have shape shots.shape=(num_shots, syndrome_length), where num_shots is the
number of shots (samples), and syndrome_length is the length of the binary syndrome vector to be
decoded for each shot. If len(self.boundary)==0 (e.g. if there is no boundary, or only a virtual
boundary node, the default when loading from stim) then syndrome_length=self.num_detectors.
However, syndrome_length is permitted to be as high as self.num_nodes in case the graph contains
detectors nodes with an index larger than self.num_detectors-1 (when len(self.boundary)>0).

If bit_packed_shots==True then shots should have shape
shots.shape=(num_shots, math.ceil(syndrome_length / 8)). Bit packing should be done using little endian
order on the last axis (like np.packbits(data, bitorder='little', axis=1)), so that the bit for
detection event m in shot s can be found at (dets[s, m // 8] >> (m % 8)) & 1.



	return_weightsbool
	If True, then also return a numpy array containing the weights of the solutions for all the shots.
By default, False.



	bit_packed_shotsbool
	Set to True to provide shots as a bit-packed array, such that the bit for
detection event m in shot s can be found at (dets[s, m // 8] >> (m % 8)) & 1.



	bit_packed_predictionsbool
	Set to True if the returned predictions should be bit-packed, with the bit for fault id m in
shot s in (obs[s, m // 8] >> (m % 8)) & 1







	Returns

	
	predictions: np.ndarray
	The batch of predictions output by the decoder, a binary numpy array of dtype=np.uint8 and with shape
predictions.shape=(num_shots, self.num_fault_ids). predictions[i, j]=1 iff the decoder predicts that
fault id j was flipped in the shot i.



	weights: np.ndarray
	The weights of the MWPM solutions, a numpy array of dtype=float. weights[i] is the weight of the
MWPM solution in shot i.









Examples

>>> import pymatching
>>> import stim
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
...                                  distance=5,
...                                  rounds=5,
...                                  after_clifford_depolarization=0.005)
>>> model = circuit.detector_error_model(decompose_errors=True)
>>> matching = pymatching.Matching.from_detector_error_model(model)
>>> sampler = circuit.compile_detector_sampler()
>>> syndrome, actual_observables = sampler.sample(shots=10000, separate_observables=True)
>>> syndrome.shape
(10000, 120)
>>> actual_observables.shape
(10000, 1)
>>> predicted_observables = matching.decode_batch(syndrome)
>>> predicted_observables.shape
(10000, 1)
>>> num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))





We can also decode bit-packed shots, and return bit-packed predictions:
>>> import pymatching
>>> import stim
>>> circuit = stim.Circuit.generated(“surface_code:rotated_memory_x”,
…                                  distance=5,
…                                  rounds=5,
…                                  after_clifford_depolarization=0.005)
>>> model = circuit.detector_error_model(decompose_errors=True)
>>> matching = pymatching.Matching.from_detector_error_model(model)
>>> sampler = circuit.compile_detector_sampler()
>>> syndrome, actual_observables = sampler.sample(shots=10000, separate_observables=True, bit_packed=True)
>>> syndrome.shape
(10000, 15)
>>> actual_observables.shape
(10000, 1)
>>> predicted_observables = matching.decode_batch(syndrome, bit_packed_shots=True, bit_packed_predictions=True)
>>> predicted_observables.shape
(10000, 1)
>>> num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))






	
decode_to_edges_array(syndrome: Union[ndarray, List[int]]) → ndarray

	Decode the syndrome syndrome using minimum-weight perfect matching, returning the edges in the
solution, given as pairs of detector node indices in a numpy array.


	Parameters

	
	syndromenumpy.ndarray
	A binary syndrome vector to decode. The number of elements in
syndrome should equal the number of nodes in the matching graph. If
syndrome is a 1D array, then syndrome[i] is the syndrome at node i of
the matching graph. If syndrome is 2D then syndrome[i,j] is the difference
(modulo 2) between the (noisy) measurement of stabiliser i in time
step j+1 and time step j (for the case where the matching graph is
constructed from a check matrix with repetitions>1).







	Returns

	
	numpy.ndarray
	A 2D array edges giving the edges in the matching solution as pairs of detector nodes (or as a detector
node and the boundary, for a boundary edge). If there are num_predicted_edges edges then the shape of
edges is edges.shape=(num_predicted_edges, 2), and edge i is between detector node edges[i, 0]
and detector node edges[i, 1]. For a boundary edge i between a detector node k and the boundary
(either a boundary node or the virtual boundary node), then pairs[i,0] is k, and pairs[i,1]=-1
denotes the boundary (the boundary is always denoted by -1 and is always in the second column).









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> m.add_edge(4, 5)
>>> m.add_edge(5, 6)
>>> edges = m.decode_to_edges_array([0, 1, 0, 0, 1, 0, 1])
>>> print(edges)
[[ 0  1]
 [ 0 -1]
 [ 5  4]
 [ 5  6]]










	
decode_to_matched_dets_array(syndrome: Union[ndarray, List[int]]) → ndarray

	Decode the syndrome syndrome using minimum-weight perfect matching, returning the pairs of
matched detection events (or detection events matched to the boundary) as a 2D numpy array.
Each pair of matched detection events returned by this method corresponds to a shortest path
between the detection events in the solution to the problem: if you instead want the set of
all edges in the solution (pairs of detector nodes), use Matching.decode_to_edges instead.
Note that, unlike Matching.decode, Matching.decode_batch and Matching.decode_to_edges_array,
this method currently only supports non-negative edge weights.


	Parameters

	
	syndromenumpy.ndarray
	A binary syndrome vector to decode. The number of elements in
syndrome should equal the number of nodes in the matching graph. If
syndrome is a 1D array, then syndrome[i] is the syndrome at node i of
the matching graph. If syndrome is 2D then syndrome[i,j] is the difference
(modulo 2) between the (noisy) measurement of stabiliser i in time
step j+1 and time step j (for the case where the matching graph is
constructed from a check matrix with repetitions>1).







	Returns

	
	numpy.ndarray
	An 2D array pairs giving the endpoints of the paths between detection events in the solution of the
matching. If there are num_paths paths then the shape of pairs is pairs.shape=(num_paths, 2), and
path i starts at detection event pairs[i,0] and ends at detection event pairs[i,1]. For a path i
connecting a detection event to the boundary (either a boundary node or the virtual boundary node), then
pairs[i,0] is the index of the detection event, and pairs[i,1]=-1 denotes the boundary.









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> m.add_edge(4, 5)
>>> m.add_edge(5, 6)
>>> matched_dets = m.decode_to_matched_dets_array([0, 1, 0, 0, 1, 0, 1])
>>> print(matched_dets)
[[ 1 -1]
 [ 4  6]]










	
decode_to_matched_dets_dict(syndrome: Union[ndarray, List[int]]) → Union[ndarray, Tuple[ndarray, int]]

	Decode the syndrome syndrome using minimum-weight perfect matching, returning a dictionary
giving the detection event that each detection event was matched to (or None if it was matched
to the boundary). Note that (unlike Matching.decode), this method currently only supports non-negative
edge weights.


	Parameters

	
	syndromenumpy.ndarray
	A binary syndrome vector to decode. The number of elements in
syndrome should equal the number of nodes in the matching graph. If
syndrome is a 1D array, then syndrome[i] is the syndrome at node i of
the matching graph. If syndrome is 2D then syndrome[i,j] is the difference
(modulo 2) between the (noisy) measurement of stabiliser i in time
step j+1 and time step j (for the case where the matching graph is
constructed from a check matrix with repetitions>1).







	Returns

	
	dict
	A dictionary mate giving the detection event that each detection event is matched to (or None if
it is matched to the boundary). If detection event i is matched to detection event j, then
mate[i]=j. If detection event i is matched to the boundary (either a boundary node or the virtual boundary
node), then mate[i]=None.









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> d = m.decode_to_matched_dets_dict([1, 0, 0, 1, 1])
>>> d[3]
4
>>> d
{0: None, 3: 4, 4: 3}










	
draw() → None

	Draw the matching graph using matplotlib
Draws the matching graph as a matplotlib graph. Detector nodes are
filled grey and boundary nodes are filled white. The line thickness of each
edge is determined from its weight (with min and max thicknesses of 0.2 pts
and 2 pts respectively).
Each node is labelled with its id/index, and each edge is labelled with its fault_ids.
Note that you may need to call plt.figure() before and plt.show() after calling
this function.






	
edges() → List[Tuple[int, Optional[int], Dict]]

	Edges of the matching graph
Returns a list of edges of the matching graph. Each edge is a
tuple (source, target, attr) where source and target are ints corresponding to the
indices of the source and target nodes, and attr is a dictionary containing the
attributes of the edge.
The dictionary attr has keys fault_ids (a set of ints), weight (the weight of the edge,
set to 1.0 if not specified), and error_probability
(the error probability of the edge, set to -1 if not specified).


	Returns

	
	List of (int, int, dict) tuples
	A list of edges of the matching graph














	
ensure_num_fault_ids(min_num_fault_ids: int) → None

	Set the minimum number of fault ids in the matching graph.

Let max_id be the maximum fault id assigned to any of the edges in a pymatching.Matching graph m.
Then setting m.ensure_num_fault_ids(n) will ensure that Matching.num_fault_ids=max(n, max_id).
Note that Matching.num_fault_ids sets the length of the correction array output by Matching.decode.


	Parameters

	
	min_num_fault_ids: int
	The required minimum number of fault ids in the matching graph














	
static from_check_matrix(check_matrix: Union[csc_matrix, spmatrix, ndarray, List[List[int]]], weights: Optional[Union[float, ndarray, List[float]]] = None, error_probabilities: Optional[Union[float, ndarray, List[float]]] = None, repetitions: Optional[int] = None, timelike_weights: Optional[Union[float, ndarray, List[float]]] = None, measurement_error_probabilities: Optional[Union[float, ndarray, List[float]]] = None, *, faults_matrix: Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]] = None, merge_strategy: str = 'smallest-weight', use_virtual_boundary_node: bool = False, **kwargs) → Matching

	Load a matching graph from a check matrix


	Parameters

	
	check_matrixscipy.csc_matrix or numpy.ndarray or List[List[int]]
	The quantum code to be decoded with minimum-weight perfect
matching, given as a binary check matrix (scipy sparse
matrix or numpy.ndarray)



	weightsfloat or numpy.ndarray, optional
	If check_matrix is given as a scipy or numpy array, weights gives the weights
of edges in the matching graph corresponding to columns of check_matrix.
If weights is a numpy.ndarray, it should be a 1D array with length
equal to check_matrix.shape[1]. If weights is a float, it is used as the weight for all
edges corresponding to columns of check_matrix. By default None, in which case
all weights are set to 1.0
This argument was renamed from spacelike_weights in PyMatching v2.0, but
spacelike_weights is still accepted in place of weights for backward compatibility.



	error_probabilitiesfloat or numpy.ndarray, optional
	The probabilities with which an error occurs on each edge associated with a
column of check_matrix. If a
single float is given, the same error probability is used for each
column. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in check_matrix. This parameter is only
needed for the Matching.add_noise method, and not for decoding.
By default None



	repetitionsint, optional
	The number of times the stabiliser measurements are repeated, if
the measurements are noisy. By default None



	timelike_weightsfloat or numpy.ndarray, optional
	If repetitions>1, timelike_weights gives the weight of
timelike edges. If a float is given, all timelike edges weights are set to
the same value. If a numpy array of size (check_matrix.shape[0],) is given, the
edge weight for each vertical timelike edge associated with the i`th check (row)
of `check_matrix is set to timelike_weights[i]. By default None, in which case all
timelike weights are set to 1.0



	measurement_error_probabilitiesfloat or numpy.ndarray, optional
	If repetitions>1, gives the probability of a measurement
error to be used for the add_noise method. If a float is given, all measurement
errors are set to the same value. If a numpy array of size (check_matrix.shape[0],) is given,
the error probability for each vertical timelike edge associated with the i`th check
(row) of `check_matrix is set to measurement_error_probabilities[i]. This argument can also be
given using the keyword argument measurement_error_probability to maintain backward
compatibility with previous versions of Pymatching. By default None



	faults_matrix: `scipy.csc_matrix` or `numpy.ndarray` or List[List[int]], optional
	A binary array of faults, which can be used to set the fault_ids for each edge in the
constructed matching graph. The fault_ids attribute of the edge corresponding to column
j of check_matrix includes fault id i if and only if faults[i,j]==1. Therefore, the number
of columns in faults must match the number of columns in check_matrix. By default, faults is just
set to the identity matrix, in which case the edge corresponding to column j of check_matrix
has fault_ids={j}. As an example, if check_matrix corresponds to the X check matrix of
a CSS stabiliser code, then you could set faults to the X logical operators: in this case
the output of Matching.decode will be a binary array correction where correction[i]==1
if the decoder predicts that the logical operator corresponding to row i of faults was flipped,
given the observed syndrome.



	merge_strategy: str, optional
	Which strategy to use when adding an edge (node1, node2) that is already in the graph. The available
options are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”. “disallow” raises a
ValueError if the edge (node1, node2) is already present. The “independent” strategy assumes that
the existing edge (node1, node2) and the edge being added represent independent error mechanisms, and
they are merged into a new edge with updated weights and error_probabilities accordingly (it is assumed
that each weight represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
the code has distance 2 if parallel edges have different fault_ids anyway). The “smallest-weight” strategy
keeps only the new edge if it has a smaller weight than the existing edge, otherwise the graph is left
unchanged. The “keep-original” strategy keeps only the existing edge, and ignores the edge being added.
The “replace” strategy always keeps the edge being added, replacing the existing edge.
By default, “smallest-weight”



	use_virtual_boundary_node: bool, optional
	This option determines how columns are handled if they contain only a single 1 (representing a boundary edge).
Consider a column contains a single 1 at row index i. If use_virtual_boundary_node=False, then this column
will be handled by adding an edge (i, check_matrix.shape[0]), and marking the node check_matrix.shape[0] as a boundary node with
Matching.set_boundary(check_matrix.shape[0]). The resulting graph will contain check_matrix.shape[0]+1 nodes, the largest of
which is the boundary node. If use_virtual_boundary_node=True then instead the boundary is a virtual node, and
this column is handled with Matching.add_boundary_edge(i, …). The resulting graph will contain check_matrix.shape[0]
nodes, and there is no boundary node. Both options are handled identically by the decoder, although
use_virtual_boundary_node=True is recommended since it is simpler (with a one-to-one correspondence between
nodes and rows of check_matrix), and is also slightly more efficient. By default, False (for backward compatibility)









Examples

>>> import pymatching
>>> m = pymatching.Matching.from_check_matrix([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]])
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>





Matching objects can also be initialised from a sparse scipy matrix:

>>> import pymatching
>>> from scipy.sparse import csc_matrix
>>> check_matrix = csc_matrix([[1, 1, 0], [0, 1, 1]])
>>> m = pymatching.Matching.from_check_matrix(check_matrix)
>>> m
<pymatching.Matching object with 2 detectors, 1 boundary node, and 3 edges>










	
static from_detector_error_model(model: stim.DetectorErrorModel) → pymatching.Matching

	Constructs a pymatching.Matching object by loading from a stim.DetectorErrorModel.

A stim.DetectorErrorModel (DEM) describes a circuit-level noise model in a quantum error correction protocol,
and is defined in the
Stim documentation: https://github.com/quantumlib/Stim/blob/main/doc/file_format_dem_detector_error_model.md.
When loading from a DEM, there is a one-to-one correspondence with a detector in the DEM and a
node in the pymatching.Matching graph, and each graphlike error in the DEM becomes an edge (or merged into
a parallel edge) in the pymatching.Matching graph.
A error instruction in the DEM is graphlike if it causes either one or two detection events, and can be
either its own DEM instruction, or within a suggested decomposition of a larger DEM instruction.
Error instruction in the DEM that cause more than two detection events and do not have a suggested
decomposition into edges are ignored.
There set of fault_ids assigned to a pymatching.Matching graph edge is the set of
logical_observable indices associated with the corresponding graphlike fault mechanism in the DEM.
Parallel edges are merged, with weights chosen on the assumption that the error mechanisms associated with the
parallel edges are independent.
the logical_observable indices associated with the first added parallel edge are kept for the merged edge.
If you are loading a pymatching.Matching graph from a DEM, you may be interested in
using the sinter Python package for monte carlo sampling: https://pypi.org/project/sinter/.


	Parameters

	
	modelstim.DetectorErrorModel
	A stim DetectorErrorModel, with all error mechanisms either graphlike, or decomposed into graphlike
error mechanisms







	Returns

	
	pymatching.Matching
	A pymatching.Matching object representing the graphlike error mechanisms in model









Examples

>>> import stim
>>> import pymatching
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
...                                  distance=5,
...                                  rounds=5,
...                                  after_clifford_depolarization=0.005)
>>> model = circuit.detector_error_model(decompose_errors=True)
>>> matching = pymatching.Matching.from_detector_error_model(model)
>>> matching
<pymatching.Matching object with 120 detectors, 0 boundary nodes, and 502 edges>










	
static from_detector_error_model_file(dem_path: str) → Matching

	Construct a pymatching.Matching by loading from a stim DetectorErrorModel file path.


	Parameters

	
	dem_pathstr
	The path of the detector error model file







	Returns

	
	pymatching.Matching
	A pymatching.Matching object representing the graphlike error mechanisms in the stim DetectorErrorModel
in the file dem_path














	
static from_networkx(graph: Graph, *, min_num_fault_ids: Optional[int] = None) → Matching

	Returns a new pymatching.Matching object from a NetworkX graph


	Parameters

	
	graphnetworkx.Graph
	Each edge in the NetworkX graph can have optional
attributes fault_ids, weight and error_probability.
fault_ids should be an int or a set of ints.
Each fault id corresponds to a self-inverse fault that is flipped when the
corresponding edge is flipped. These self-inverse faults could correspond to
physical Pauli errors (physical frame changes)
or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim
detector error model).
The fault_ids attribute determines how the solution is output via pymatching.Matching.decode:
the binary correction array has length pymatching.Matching.num_fault_ids, and correction[i]
is 1 if and only if an odd number of edges in the MWPM solution have i in their fault_ids attribute.
The fault_ids attribute was previously named qubit_id in an
earlier version of PyMatching, and qubit_id is still accepted instead of fault_ids in order
to maintain backward compatibility.
Each weight attribute should be a non-negative float. If
every edge is assigned an error_probability between zero and one,
then the add_noise method can be used to simulate noise and
flip edges independently in the graph.



	min_num_fault_ids: int
	Sets the minimum number of fault ids in the matching graph. Let max_id be the maximum fault id assigned to
any of the edges in the graph. Then setting this argument will ensure that
Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Matching.num_fault_ids sets the length
of the correction array output by Matching.decode.









Examples

>>> import pymatching
>>> import networkx as nx
>>> import math
>>> g = nx.Graph()
>>> g.add_edge(0, 1, fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1)
>>> g.add_edge(1, 2, fault_ids=1, weight=math.log((1-0.15)/0.15), error_probability=0.15)
>>> g.nodes[0]['is_boundary'] = True
>>> g.nodes[2]['is_boundary'] = True
>>> m = pymatching.Matching.from_networkx(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>










	
static from_stim_circuit(circuit: stim.Circuit) → pymatching.Matching

	Constructs a pymatching.Matching object by loading from a stim.Circuit


	Parameters

	
	circuitstim.Circuit
	A stim circuit containing error mechanisms that are all either graphlike, or decomposable into
graphlike error mechanisms







	Returns

	
	pymatching.Matching
	A pymatching.Matching object representing the graphlike error mechanisms in circuit, with any hyperedge
error mechanisms decomposed into graphlike error mechanisms. Parallel edges are merged using
merge_strategy=”independent”.









Examples

>>> import stim
>>> import pymatching
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
...                                  distance=5,
...                                  rounds=5,
...                                  after_clifford_depolarization=0.005)
>>> matching = pymatching.Matching.from_stim_circuit(circuit)
>>> matching
<pymatching.Matching object with 120 detectors, 0 boundary nodes, and 502 edges>










	
static from_stim_circuit_file(stim_circuit_path: str) → Matching

	Construct a pymatching.Matching by loading from a stim circuit file path.


	Parameters

	
	stim_circuit_pathstr
	The path of the stim circuit file







	Returns

	
	pymatching.Matching
	A pymatching.Matching object representing the graphlike error mechanisms in the stim circuit
in the file stim_circuit_path, with any hyperedge error mechanisms decomposed into graphlike error
mechanisms. Parallel edges are merged using merge_strategy=”independent”.














	
get_boundary_edge_data(node: int) → Dict[str, Union[Set[int], float]]

	Returns the edge data associated with the boundary edge (node,).


	Parameters

	
	node: int
	The index of the node







	Returns

	
	dict
	A dictionary with keys fault_ids, weight and error_probability, and values giving the respective
boundary edge attributes














	
get_edge_data(node1: int, node2: int) → Dict[str, Union[Set[int], float]]

	Returns the edge data associated with the edge (node1, node2).


	Parameters

	
	node1: int
	The index of the first node



	node2: int
	The index of the second node







	Returns

	
	dict
	A dictionary with keys fault_ids, weight and error_probability, and values giving the respective
edge attributes














	
has_boundary_edge(node: int) → bool

	Returns True if the boundary edge (node,) is in the graph. Note: this method does
not check if node is connected to a boundary node in Matching.boundary; it only
checks if node is connected to the virtual boundary node (i.e. whether there is a boundary
edge (node,) present).


	Parameters

	
	node: int
	The index of the node







	Returns

	
	bool
	True if the boundary edge (node,) is present, otherwise False.














	
has_edge(node1: int, node2: int) → bool

	Returns True if edge (node1, node2) is in the graph.


	Parameters

	
	node1: int
	The index of the first node



	node2: int
	The index of the second node







	Returns

	
	bool
	True if the edge (node1, node2) is in the graph, otherwise False.














	
load_from_check_matrix(check_matrix: Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]] = None, weights: Optional[Union[float, ndarray, List[float]]] = None, error_probabilities: Optional[Union[float, ndarray, List[float]]] = None, repetitions: Optional[int] = None, timelike_weights: Optional[Union[float, ndarray, List[float]]] = None, measurement_error_probabilities: Optional[Union[float, ndarray, List[float]]] = None, *, faults_matrix: Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]] = None, merge_strategy: str = 'smallest-weight', use_virtual_boundary_node: bool = False, **kwargs) → None

	Load a matching graph from a check matrix


	Parameters

	
	check_matrixscipy.csc_matrix or numpy.ndarray or List[List[int]]
	The quantum code to be decoded with minimum-weight perfect
matching, given as a binary check matrix (scipy sparse
matrix or numpy.ndarray)



	weightsfloat or numpy.ndarray, optional
	If check_matrix is given as a scipy or numpy array, weights gives the weights
of edges in the matching graph corresponding to columns of check_matrix.
If weights is a numpy.ndarray, it should be a 1D array with length
equal to check_matrix.shape[1]. If weights is a float, it is used as the weight for all
edges corresponding to columns of check_matrix. By default None, in which case
all weights are set to 1.0
This argument was renamed from spacelike_weights in PyMatching v2.0, but
spacelike_weights is still accepted in place of weights for backward compatibility.



	error_probabilitiesfloat or numpy.ndarray, optional
	The probabilities with which an error occurs on each edge associated with a
column of check_matrix. If a
single float is given, the same error probability is used for each
column. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in check_matrix. This parameter is only
needed for the Matching.add_noise method, and not for decoding.
By default None



	repetitionsint, optional
	The number of times the stabiliser measurements are repeated, if
the measurements are noisy. By default None



	timelike_weightsfloat or numpy.ndarray, optional
	If repetitions>1, timelike_weights gives the weight of
timelike edges. If a float is given, all timelike edges weights are set to
the same value. If a numpy array of size (check_matrix.shape[0],) is given, the
edge weight for each vertical timelike edge associated with the i`th check (row)
of `check_matrix is set to timelike_weights[i]. By default None, in which case all
timelike weights are set to 1.0



	measurement_error_probabilitiesfloat or numpy.ndarray, optional
	If repetitions>1, gives the probability of a measurement
error to be used for the add_noise method. If a float is given, all measurement
errors are set to the same value. If a numpy array of size (check_matrix.shape[0],) is given,
the error probability for each vertical timelike edge associated with the i`th check
(row) of `check_matrix is set to measurement_error_probabilities[i]. This argument can also be
given using the keyword argument measurement_error_probability to maintain backward
compatibility with previous versions of Pymatching. By default None



	faults_matrix: `scipy.csc_matrix` or `numpy.ndarray` or List[List[int]], optional
	A binary array of faults, which can be used to set the fault_ids for each edge in the
constructed matching graph. The fault_ids attribute of the edge corresponding to column
j of check_matrix includes fault id i if and only if faults[i,j]==1. Therefore, the number
of columns in faults must match the number of columns in check_matrix. By default, faults is just
set to the identity matrix, in which case the edge corresponding to column j of check_matrix
has fault_ids={j}. As an example, if check_matrix corresponds to the X check matrix of
a CSS stabiliser code, then you could set faults to the X logical operators: in this case
the output of Matching.decode will be a binary array correction where correction[i]==1
if the decoder predicts that the logical operator corresponding to row i of faults was flipped,
given the observed syndrome.



	merge_strategy: str, optional
	Which strategy to use when adding an edge (node1, node2) that is already in the graph. The available
options are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”. “disallow” raises a
ValueError if the edge (node1, node2) is already present. The “independent” strategy assumes that
the existing edge (node1, node2) and the edge being added represent independent error mechanisms, and
they are merged into a new edge with updated weights and error_probabilities accordingly (it is assumed
that each weight represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and
where the natural logarithm is used. The fault_ids associated with the existing edge are kept only, since
the code has distance 2 if parallel edges have different fault_ids anyway). The “smallest-weight” strategy
keeps only the new edge if it has a smaller weight than the existing edge, otherwise the graph is left
unchanged. The “keep-original” strategy keeps only the existing edge, and ignores the edge being added.
The “replace” strategy always keeps the edge being added, replacing the existing edge.
By default, “smallest-weight”



	use_virtual_boundary_node: bool, optional
	This option determines how columns are handled if they contain only a single 1 (representing a boundary edge).
Consider a column contains a single 1 at row index i. If use_virtual_boundary_node=False, then this column
will be handled by adding an edge (i, check_matrix.shape[0]), and marking the node check_matrix.shape[0] as a boundary node with
Matching.set_boundary(check_matrix.shape[0]). The resulting graph will contain check_matrix.shape[0]+1 nodes, the largest of
which is the boundary node. If use_virtual_boundary_node=True then instead the boundary is a virtual node, and
this column is handled with Matching.add_boundary_edge(i, …). The resulting graph will contain check_matrix.shape[0]
nodes, and there is no boundary node. Both options are handled identically by the decoder, although
use_virtual_boundary_node=True is recommended since it is simpler (with a one-to-one correspondence between
nodes and rows of check_matrix), and is also slightly more efficient. By default, False (for backward compatibility)









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.load_from_check_matrix([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]])
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>





Matching objects can also be initialised from a sparse scipy matrix:
>>> import pymatching
>>> from scipy.sparse import csc_matrix
>>> check_matrix = csc_matrix([[1, 1, 0], [0, 1, 1]])
>>> m = pymatching.Matching()
>>> m.load_from_check_matrix(check_matrix)
>>> m
<pymatching.Matching object with 2 detectors, 1 boundary node, and 3 edges>






	
load_from_networkx(graph: Graph, *, min_num_fault_ids: Optional[int] = None) → None

	Load a matching graph from a NetworkX graph into a pymatching.Matching object


	Parameters

	
	graphnetworkx.Graph
	Each edge in the NetworkX graph can have optional
attributes fault_ids, weight and error_probability.
fault_ids should be an int or a set of ints.
Each fault id corresponds to a self-inverse fault that is flipped when the
corresponding edge is flipped. These self-inverse faults could correspond to
physical Pauli errors (physical frame changes)
or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim
detector error model).
The fault_ids attribute determines how the solution is output via pymatching.Matching.decode:
the binary correction array has length pymatching.Matching.num_fault_ids, and correction[i]
is 1 if and only if an odd number of edges in the MWPM solution have i in their fault_ids attribute.
The fault_ids attribute was previously named qubit_id in an
earlier version of PyMatching, and qubit_id is still accepted instead of fault_ids in order
to maintain backward compatibility.
Each weight attribute should be a non-negative float. If
every edge is assigned an error_probability between zero and one,
then the add_noise method can be used to simulate noise and
flip edges independently in the graph.



	min_num_fault_ids: int
	Sets the minimum number of fault ids in the matching graph. Let max_id be the maximum fault id assigned to
any of the edges in the graph. Then setting this argument will ensure that
Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Matching.num_fault_ids sets the length
of the correction array output by Matching.decode.









Examples

>>> import pymatching
>>> import networkx as nx
>>> import math
>>> g = nx.Graph()
>>> g.add_edge(0, 1, fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1)
>>> g.add_edge(1, 2, fault_ids=1, weight=math.log((1-0.15)/0.15), error_probability=0.15)
>>> g.nodes[0]['is_boundary'] = True
>>> g.nodes[2]['is_boundary'] = True
>>> m = pymatching.Matching(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>










	
load_from_retworkx(graph: PyGraph, *, min_num_fault_ids: Optional[int] = None) → None

	Load a matching graph from a retworkX graph


	Parameters

	
	graphretworkx.PyGraph
	Each edge in the retworkx graph can have dictionary payload with keys
fault_ids, weight and error_probability. fault_ids should be
an int or a set of ints. Each fault id corresponds to a self-inverse fault
that is flipped when the corresponding edge is flipped. These self-inverse
faults could correspond to physical Pauli errors (physical frame changes)
or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim
detector error model). The fault_ids attribute was previously named qubit_id in an
earlier version of PyMatching, and qubit_id is still accepted instead of fault_ids in order
to maintain backward compatibility.
Each weight attribute should be a non-negative float. If
every edge is assigned an error_probability between zero and one,
then the add_noise method can be used to simulate noise and
flip edges independently in the graph.



	min_num_fault_ids: int
	Sets the minimum number of fault ids in the matching graph. Let max_id be the maximum fault id assigned to
any of the edges in the graph. Then setting this argument will ensure that
Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Matching.num_fault_ids sets the length
of the correction array output by Matching.decode.









Examples

>>> import pymatching
>>> import retworkx as rx
>>> import math
>>> g = rx.PyGraph()
>>> matching = g.add_nodes_from([{} for _ in range(3)])
>>> edge_a =g.add_edge(0, 1, dict(fault_ids=0, weight=math.log((1-0.1)/0.1), error_probability=0.1))
>>> edge_b = g.add_edge(1, 2, dict(fault_ids=1, weight=math.log((1-0.15)/0.15), error_probability=0.15))
>>> g[0]['is_boundary'] = True
>>> g[2]['is_boundary'] = True
>>> m = pymatching.Matching(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>










	
property num_detectors: int

	The number of detectors in the matching graph. A
detector is a node that can have a non-trivial syndrome
(i.e. it is a node that is not a boundary node).


	Returns

	
	int
	The number of detectors














	
property num_edges: int

	The number of edges in the matching graph


	Returns

	
	int
	The number of edges














	
property num_fault_ids: int

	The number of fault IDs defined in the matching graph


	Returns

	
	int
	Number of fault IDs














	
property num_nodes: int

	The number of nodes in the matching graph


	Returns

	
	int
	The number of nodes














	
set_boundary_nodes(nodes: Set[int]) → None

	Set boundary nodes in the matching graph. This defines the
nodes in nodes to be boundary nodes.


	Parameters

	
	nodes: set[int]
	The IDs of the nodes to be set as boundary nodes









Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.set_boundary_nodes({0, 2})
>>> m.boundary
{0, 2}
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>










	
to_networkx() → Graph

	Convert to NetworkX graph
Returns a NetworkX graph corresponding to the matching graph. Each edge
has attributes fault_ids, weight and error_probability and each node has
the attribute is_boundary.


	Returns

	
	NetworkX.Graph
	NetworkX Graph corresponding to the matching graph














	
to_retworkx() → PyGraph

	Convert to retworkx graph
Returns a retworkx graph object corresponding to the matching graph. Each edge
payload is a dict with keys fault_ids, weight and error_probability and
each node has a dict payload with the key is_boundary and the value is
a boolean.


	Returns

	
	retworkx.PyGraph
	retworkx graph corresponding to the matching graph



















Command line interface


	
pymatching.cli()

	main(*, command_line_args: List[str]) -> int

Runs the command line tool version of pymatching with the given arguments.







Random number generator


	
pymatching.set_seed(seed: int) → None

	Sets the seed of the random number generator


	Parameters

	
	seed: int
	The seed for the random number generator (must be non-negative)









Examples

>>> import pymatching
>>> pymatching.set_seed(10)










	
pymatching.randomize() → None

	Choose a random seed using std::random_device

Examples

>>> import pymatching
>>> pymatching.randomize()










	
pymatching.rand_float(from: float, to: float) → float

	Generate a floating point number chosen uniformly at random
over the interval between from and to


	Parameters

	
	from: float
	Smallest float that can be drawn from the distribution



	to: float
	Largest float that can be drawn from the distribution







	Returns

	
	float
	The random float
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