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PyMatching, Release 2.1.0

PyMatching is a fast Python/C++ library for decoding quantum error correcting (QEC) codes using the Minimum
Weight Perfect Matching (MWPM) decoder. Given the syndrome measurements from a quantum error correction
circuit, the MWPM decoder finds the most probable set of errors, given the assumption that error mechanisms are
independent, as well as graphlike (each error causes either one or two detection events). The MWPM decoder is the
most popular decoder for decoding surface codes, and can also be used to decode various other code families, including
subsystem codes, honeycomb codes and 2D hyperbolic codes.

Version 2 includes a new implementation of the blossom algorithm which is 100-1000x faster than previous versions
of PyMatching. PyMatching can be configured using arbitrary weighted graphs, with or without a boundary, and can be
combined with Craig Gidney’s Stim library to simulate and decode error correction circuits in the presence of circuit-
level noise. The sinter package combines Stim and PyMatching to perform fast, parallelised monte-carlo sampling of
quantum error correction circuits.

Documentation for PyMatching can be found at: pymatching.readthedocs.io

To see how stim, sinter and pymatching can be used to estimate the threshold of an error correcting code with circuit-
level noise, try out the stim getting started notebook.
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CHAPTER

ONE

THE NEW >100X FASTER IMPLEMENTATION FOR VERSION 2

Version 2 features a new implementation of the blossom algorithm, which I wrote with Craig Gidney. Our new imple-
mentation, which we refer to as the sparse blossom algorithm, can be seen as a generalisation of the blossom algorithm
to handle the decoding problem relevant to QEC. We solve the problem of finding minimum-weight paths between
detection events in a detector graph directly, which avoids the need to use costly all-to-all Dijkstra searches to find
a MWPM in a derived graph using the original blossom algorithm. The new version is also exact - unlike previous
versions of PyMatching, no approximation is made.

Our new implementation is over 100x faster than previous versions of PyMatching, and is over 100,000x faster than
NetworkX (benchmarked with surface code circuits). At 0.1% circuit-noise, PyMatching can decode both X and Z basis
measurements of surface code circuits up to distance 17 in under 1 microsecond per round of syndrome extraction on
a single core. Furthermore, the runtime is roughly linear in the number of nodes in the graph.

The plot below compares the performance of PyMatching v2 with the previous version (v0.7) as well as with NetworkX
for decoding surface code circuits with circuit-level depolarising noise. All decoders were run on a single core of an
M1 processor, processing both the X and Z basis measurements. The equations T=N^x in the legend (and plotted as
dashed lines) are obtained from a fit to the same dataset for distance > 10, where N is the number of detectors (nodes)
per round, and T is the decoding time per round. See the benchmarks folder in the repository for the data and stim
circuits, as well as additional benchmarks.
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Sparse blossom is conceptually similar to the approach described in this paper by Austin Fowler, although our approach
differs in many of the details (which will be explained in our upcoming paper). There are even more similarities with
the very nice independent work by Yue Wu, who recently released the fusion-blossom library. One of the differences
with our approach is that fusion-blossom grows the exploratory regions of alternating trees in a similar way to how
clusters are grown in Union-Find, whereas our approach instead progresses along a timeline, and uses a global priority
queue to grow alternating trees. Yue also has a paper coming soon, so stay tuned for that as well.

4 Chapter 1. The new >100x faster implementation for Version 2
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CHAPTER

TWO

INSTALLATION

The latest version of PyMatching can be downloaded and installed from PyPI with the command:

pip install pymatching --upgrade

5
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CHAPTER

THREE

USAGE

PyMatching can load matching graphs from a check matrix, a stim.DetectorErrorModel, a networkx.Graph,
a retworkx.PyGraph or by adding edges individually with pymatching.Matching.add_edge and pymatching.
Matching.add_boundary_edge.

3.1 Decoding Stim circuits

PyMatching can be combined with Stim. Generally, the easiest and fastest way to do this is using sinter (use v1.10.0
or later), which uses PyMatching and Stim to run parallelised monte carlo simulations of quantum error correction
circuits. However, in this section we will use Stim and PyMatching directly, to demonstrate how their Python APIs can
be used. To install stim, run pip install stim --upgrade.

First, we generate a stim circuit. Here, we use a surface code circuit included with stim:

import numpy as np
import stim
import pymatching
circuit = stim.Circuit.generated("surface_code:rotated_memory_x",

distance=5,
rounds=5,
after_clifford_depolarization=0.005)

Next, we use stim to generate a stim.DetectorErrorModel (DEM), which is effectively a Tanner graph describing
the circuit-level noise model. By setting decompose_errors=True, stim decomposes all error mechanisms into edge-
like error mechanisms (which cause either one or two detection events). This ensures that our DEM is graphlike, and
can be loaded by pymatching:

model = circuit.detector_error_model(decompose_errors=True)
matching = pymatching.Matching.from_detector_error_model(model)

Next, we will sample 1000 shots from the circuit. Each shot (a row of shots) contains the full syndrome (detector
measurements), as well as the logical observable measurements, from simulating the noisy circuit:

sampler = circuit.compile_detector_sampler()
syndrome, actual_observables = sampler.sample(shots=1000, separate_observables=True)

Now we can decode! We compare PyMatching’s predictions of the logical observables with the actual observables
sampled with stim, in order to count the number of mistakes and estimate the logical error rate:

num_errors = 0
for i in range(syndrome.shape[0]):

(continues on next page)
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(continued from previous page)

predicted_observables = matching.decode(syndrome[i, :])
num_errors += not np.array_equal(actual_observables[i, :], predicted_observables)

print(num_errors) # prints 8

As of PyMatching v2.1.0, you can use matching.decode_batch to decode a batch of shots instead. Since matching.
decode_batch iterates over the shots in C++, it’s faster than iterating over calls to matching.decode in Python. The
following cell is therefore a faster equivalent to the cell above:

predicted_observables = matching.decode_batch(syndrome)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))

print(num_errors) # prints 8

3.2 Loading from a parity check matrix

We can also load a pymatching.Matching object from a binary parity check matrix, another representation of a
Tanner graph. Each row in the parity check matrix H corresponds to a parity check, and each column corresponds to
an error mechanism. The element H[i,j] of H is 1 if parity check i is flipped by error mechanism j, and 0 otherwise.
To be used by PyMatching, the error mechanisms in H must be graphlike. This means that each column must contain
either one or two 1s (if a column has a single 1, it represents a half-edge connected to the boundary).

We can give each edge in the graph a weight, by providing PyMatching with a weights numpy array. Element
weights[j] of the weights array sets the edge weight for the edge corresponding to column j of H. If the error
mechanisms are treated as independent, then we typically want to set the weight of edge j to the log-likelihood ratio
log((1-p_j)/p_j), where p_j is the error probability associated with edge j. With this setting, PyMatching will
find the most probable set of error mechanisms, given the syndrome.

With PyMatching configured using H and weights, decoding a binary syndrome vector syndrome (a numpy array
of length H.shape[0]) corresponds to finding a set of errors defined in a binary predictions vector satisfying
H@predictions % 2 == syndrome while minimising the total solution weight predictions@weights.

In quantum error correction, rather than predicting which exact set of error mechanisms occurred, we typically want
to predict the outcome of logical observable measurements, which are the parities of error mechanisms. These can
be represented by a binary matrix observables. Similar to the check matrix, observables[i,j] is 1 if logical
observable i is flipped by error mechanism j. For example, suppose our syndrome syndrome, was the result of a
set of errors noise (a binary array of length H.shape[1]), such that syndrome = H@noise % 2. Our decoding is
successful if observables@noise % 2 == observables@predictions % 2.

Putting this together, we can decode a distance 5 repetition code as follows:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching
H = csc_matrix([[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1]])

weights = np.array([4, 3, 2, 3, 4]) # Set arbitrary weights for illustration
matching = pymatching.Matching(H, weights=weights)
prediction = matching.decode(np.array([0, 1, 0, 1]))
print(prediction) # prints: [0 0 1 1 0]

(continues on next page)
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# Optionally, we can return the weight as well:
prediction, solution_weight = matching.decode(np.array([0, 1, 0, 1]), return_weight=True)
print(prediction) # prints: [0 0 1 1 0]
print(solution_weight) # prints: 5.0

And in order to estimate the logical error rate for a physical error rate of 10%, we can sample as follows:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching
H = csc_matrix([[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1]])

observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights)
num_shots = 1000
num_errors = 0
for i in range(num_shots):

noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
syndrome = H@noise % 2
prediction = matching.decode(syndrome)
predicted_observables = observables@prediction % 2
actual_observables = observables@noise % 2
num_errors += not np.array_equal(predicted_observables, actual_observables)

print(num_errors) # prints 4

Note that we can also ask PyMatching to predict the logical observables directly, by supplying them to the
faults_matrix argument when constructing the pymatching.Matching object. This allows the decoder to make
some additional optimisations, that speed up the decoding procedure a bit. The following example uses this approach,
and is equivalent to the example above:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching

H = csc_matrix([[1, 1, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1]])

observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights, faults_
→˓matrix=observables)
num_shots = 1000
num_errors = 0
for i in range(num_shots):

noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
syndrome = H@noise % 2

(continues on next page)

3.2. Loading from a parity check matrix 9



PyMatching, Release 2.1.0

(continued from previous page)

predicted_observables = matching.decode(syndrome)
actual_observables = observables@noise % 2
num_errors += not np.array_equal(predicted_observables, actual_observables)

print(num_errors) # prints 6

We’ll make one more optimisation, which is to use matching.decode_batch to decode the batch of shots, rather than
iterating over calls to matching.decode in Python:

import numpy as np
from scipy.sparse import csc_matrix
import pymatching

H = csc_matrix([[1, 1, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1]])

observables = csc_matrix([[1, 0, 0, 0, 0]])
error_probability = 0.1
num_shots = 1000
weights = np.ones(H.shape[1]) * np.log((1-error_probability)/error_probability)
matching = pymatching.Matching.from_check_matrix(H, weights=weights, faults_
→˓matrix=observables)
noise = (np.random.random((num_shots, H.shape[1])) < error_probability).astype(np.uint8)
shots = (noise @ H.T) % 2
actual_observables = (noise @ observables.T) % 2
predicted_observables = matching.decode_batch(shots)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
print(num_errors) # prints 6

Instead of using a check matrix, the Matching object can also be constructed using the `Matching.
add_edge <https://pymatching.readthedocs.io/en/stable/api.html#pymatching.matching.Matching.add_edge>`_ and
`Matching.add_boundary_edge <https://pymatching.readthedocs.io/en/stable/api.html#pymatching.matching.
Matching.add_boundary_edge>`_ methods, or by loading from a NetworkX or retworkx graph.

For more details on how to use PyMatching, see the documentation.

10 Chapter 3. Usage
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FOUR

ATTRIBUTION

A paper on our new implementation used in PyMatching version 2 (sparse blossom) will be published soon. In the
meantime, please cite:

@misc{pymatchingv2,
author = {Higgott, Oscar and Gidney, Craig},
title = {PyMatching v2},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/oscarhiggott/PyMatching}}

}

Note: the existing PyMatching paper descibes the implementation in version 0.7 and earlier of PyMatching (not v2).
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5.1 Toric code example

In this example, we’ll use PyMatching to estimate the threshold of the toric code under an independent noise model
with perfect syndrome measurements. The decoding problem for the toric code is identical for 𝑋-type and 𝑍-type
errors, so we will only simulate decoding 𝑍-type errors using 𝑋-type stabilisers in this example.

First, we will construct a check matrix 𝐻𝑋 corresponding to the 𝑋-type stabilisers. Each element 𝐻𝑋 [𝑖, 𝑗] will be 1 if
the 𝑖th 𝑋 stabiliser acts non-trivially on the 𝑗th qubit, and is 0 otherwise.

We will construct 𝐻𝑋 by taking the hypergraph product of two repetition codes. The hypergraph product code con-
struction 𝐻𝐺𝑃 (𝐻1, 𝐻2) takes as input the parity check matrices of two linear codes 𝐶1 := ker𝐻1 and 𝐶2 := ker𝐻2.
The code 𝐻𝐺𝑃 (𝐻1, 𝐻2) is a CSS code with the check matrix for the 𝑋 stabilisers given by

𝐻𝑋 = [𝐻1 ⊗ 𝐼𝑛2
, 𝐼𝑟1 ⊗𝐻𝑇

2 ]

and with the check matrix for the 𝑍 stabilisers given by

𝐻𝑍 = [𝐼𝑛1
⊗𝐻2, 𝐻

𝑇
1 ⊗ 𝐼𝑟2 ]

where 𝐻1 has dimensions 𝑟1 × 𝑛1, 𝐻2 has dimensions 𝑟2 × 𝑛2 and 𝐼𝑙 denotes the 𝑙 × 𝑙 identity matrix.

Since we only need the 𝑋 stabilisers of the toric code with lattice size L, we only need to construct 𝐻𝑋 , using the
check matrix of a repetition code with length L for both 𝐻1 and 𝐻2:

[1]: import numpy as np
import matplotlib.pyplot as plt
from scipy.sparse import hstack, kron, eye, csc_matrix, block_diag

def repetition_code(n):
"""
Parity check matrix of a repetition code with length n.
"""
row_ind, col_ind = zip(*((i, j) for i in range(n) for j in (i, (i+1)%n)))
data = np.ones(2*n, dtype=np.uint8)
return csc_matrix((data, (row_ind, col_ind)))

(continues on next page)
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def toric_code_x_stabilisers(L):
"""
Sparse check matrix for the X stabilisers of a toric code with
lattice size L, constructed as the hypergraph product of
two repetition codes.
"""
Hr = repetition_code(L)
H = hstack(

[kron(Hr, eye(Hr.shape[1])), kron(eye(Hr.shape[0]), Hr.T)],
dtype=np.uint8

)
H.data = H.data % 2
H.eliminate_zeros()
return csc_matrix(H)

From the Künneth theorem, the 𝑋 logical operators of the toric code are given by

𝐿𝑋 =

(︂
ℋ1 ⊗ℋ0 0

0 ℋ0 ⊗ℋ1

)︂
where ℋ0 and ℋ1 are the zeroth and first cohomology groups of the length-one chain complex that has the repetition
code parity check matrix as its boundary operator. We can construct this matrix with the following function:

[2]: def toric_code_x_logicals(L):
"""
Sparse binary matrix with each row corresponding to an X logical operator
of a toric code with lattice size L. Constructed from the
homology groups of the repetition codes using the Kunneth
theorem.
"""
H1 = csc_matrix(([1], ([0],[0])), shape=(1,L), dtype=np.uint8)
H0 = csc_matrix(np.ones((1, L), dtype=np.uint8))
x_logicals = block_diag([kron(H1, H0), kron(H0, H1)])
x_logicals.data = x_logicals.data % 2
x_logicals.eliminate_zeros()
return csc_matrix(x_logicals)

Now that we have the 𝑋 check matrix and 𝑋 logicals of the toric code, we can use PyMatching to simulate its perfor-
mance using the minimum-weight perfect matching decoder and an error model of our choice.

To do so, we first import the Matching class from PyMatching, and use it to construct a Matching object from the check
matrix of the stabilisers:

from pymatching import Matching
matching=Matching(H)

Constructing the Matching object, while efficient, is often slower than the decoding step itself. As a result, it’s best to
construct the Matching object only at the beginning of the experiment, and not before every use of the decoder, in order
to obtain the best performance.

We also choose a number of trials, num_shots. For each trial, we simulate a𝑍 error under an independent noise model,
in which each qubit independently suffers a 𝑍 error with probability 𝑝:

noise = np.random.binomial(1, p, H.shape[1])

14 Chapter 5. Acknowledgements
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Here, noise is a binary vector and noise[i] is 1 if qubit 𝑖 suffers a 𝑍 error, and 0 otherwise.

The syndrome of the 𝑋 stabilisers is then calculated from the dot product (modulo 2) with the 𝑋 check matrix 𝐻:

syndrome = H@noise % 2

We can now use PyMatching to infer the most probable individual error given the syndrome:

prediction = matching.decode(syndrome)

We use this to predict which logical X operators have been flipped:

predicted_logicals_flipped = logicals@prediction % 2

The actual logicals that were flipped are:

actual_logicals_flipped = logicals@noise % 2

Our decoder was successful if actual_logical_observables equals predicted_logical_observables.

Taken together, we obtain the following function num_decoding_failures that returns the number of logical errors
after num_shots Monte Carlo trials, simulating an independent error model with error probability p, with the 𝑋
stabiliser check matrix H and 𝑋 logical matrix logicals:

[3]: from pymatching import Matching

def num_decoding_failures_via_physical_frame_changes(H, logicals, error_probability, num_
→˓shots):

matching = Matching.from_check_matrix(H, weights=np.log((1-error_probability)/error_
→˓probability))

num_errors = 0
for i in range(num_shots):

noise = (np.random.random(H.shape[1]) < error_probability).astype(np.uint8)
syndrome = H@noise % 2
prediction = matching.decode(syndrome)
predicted_logicals_flipped = logicals@prediction % 2
actual_logicals_flipped = logicals@noise % 2
if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):

num_errors += 1
return num_errors

We can speed this up slightly by telling PyMatching about the logical operators matrix when we create the
pymatching.Matching object, using the faults_matrix argument. By doing this, pymatching.Matching.
decode directly predicts which logicals have been flipped. This is a bit faster, as it allows the decoder to make some
more optimisations.

[4]: def num_decoding_failures(H, logicals, p, num_shots):
matching = Matching.from_check_matrix(H, weights=np.log((1-p)/p), faults_

→˓matrix=logicals)
num_errors = 0
for i in range(num_shots):

noise = (np.random.random(H.shape[1]) < p).astype(np.uint8)
syndrome = H@noise % 2
predicted_logicals_flipped = matching.decode(syndrome)
actual_logicals_flipped = logicals@noise % 2

(continues on next page)
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if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):
num_errors += 1

return num_errors

We can optimise the code a bit further by vectorising over the shots, using the Matching.decode_batch method.
This method takes in a binary numpy array with dimensions (num_shots, syndrome_length), where syndrome_length
should be large enough to include all detector nodes, and be no larger than the number of nodes (including boundary
nodes). By vectorising, the iteration over shots is done in C++ rather than Python, which can be significantly faster
when the decoding problem itself is easy.

[5]: def num_decoding_failures_vectorised(H, logicals, error_probability, num_shots):
matching = Matching.from_check_matrix(H, weights=np.log((1-p)/p), faults_

→˓matrix=logicals)
noise = (np.random.random((num_shots, H.shape[1])) < error_probability).astype(np.

→˓uint8)
shots = (noise @ H.T) % 2
actual_observables = (noise @ logicals.T) % 2
predicted_observables = matching.decode_batch(shots)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
return num_errors

Using this function, we can now estimate the threshold of the toric code by varying the error rate 𝑝, for a range of lattice
sizes 𝐿:

[6]: %%time

num_shots = 5000
Ls = range(4,14,4)
ps = np.linspace(0.01, 0.2, 9)
np.random.seed(2)
log_errors_all_L = []
for L in Ls:

print("Simulating L={}...".format(L))
Hx = toric_code_x_stabilisers(L)
logX = toric_code_x_logicals(L)
log_errors = []
for p in ps:

num_errors = num_decoding_failures_vectorised(Hx, logX, p, num_shots)
log_errors.append(num_errors/num_shots)

log_errors_all_L.append(np.array(log_errors))

Simulating L=4...
Simulating L=8...
Simulating L=12...
CPU times: user 1.41 s, sys: 19.8 ms, total: 1.43 s
Wall time: 1.43 s

Finally, let’s plot the results! We expect to see a threshold of around 10.3%, although a precise estimate requires using
more trials, larger lattice sizes and scanning more values of 𝑝:

[7]: %matplotlib inline

plt.figure()
(continues on next page)
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for L, logical_errors in zip(Ls, log_errors_all_L):
std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))

plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);

nbsphinx-code-borderwhite

5.1.1 Noisy syndromes

In the presence of measurement errors, each syndrome measurement is repeated 𝑂(𝐿) times, and decoding instead
takes place over a 3D matching graph with an additional time dimension (see Section IV B of this paper). The time
dimension can be added to the matching graph by specifying the number of repetitions when constructing the matching
object:

matching = Matching(H, repetitions=T)

where here 𝑇 is the number of repetitions. For decoding, the difference syndrome should be supplied as an 𝑟×𝑇 binary
numpy matrix, where 𝑟 is the number of checks (rows in 𝐻). The difference syndrome in time step 𝑡 is the difference
(modulo 2) between the syndrome measurement in time step 𝑡 and 𝑡 − 1, and ensures that any single measurement
error results in two syndrome defects (at the endpoints of a timelike edge in the matching graph). The last round of
syndrome measurements should be free of measurement errors to ensure that the overall syndrome has even parity:
when qubits are measured individually at the end of a computation then the final round of syndrome measurement is
indeed error-free (stabilisers can be determined exactly in post-processing), however the overlapping recovery method
should be implemented when decoding must be completed before all qubits are measured.

The following example demonstrates decoding in the presence of measurement errors using a phenomenological error
model. In this error model, in each round of measurements each qubit suffers an error with probability 𝑝, and each
syndrome is measured incorrectly with probability 𝑞.
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[8]: def num_decoding_failures_noisy_syndromes(H, logicals, p, q, num_shots, repetitions):
matching = Matching(H, weights=np.log((1-p)/p),

repetitions=repetitions, timelike_weights=np.log((1-q)/q), faults_
→˓matrix=logicals)

num_stabilisers, num_qubits = H.shape
num_errors = 0
for i in range(num_shots):

noise_new = (np.random.rand(num_qubits, repetitions) < p).astype(np.uint8)
noise_cumulative = (np.cumsum(noise_new, 1) % 2).astype(np.uint8)
noise_total = noise_cumulative[:,-1]
syndrome = H@noise_cumulative % 2
syndrome_error = (np.random.rand(num_stabilisers, repetitions) < q).astype(np.

→˓uint8)
syndrome_error[:,-1] = 0 # Perfect measurements in last round to ensure even␣

→˓parity
noisy_syndrome = (syndrome + syndrome_error) % 2
# Convert to difference syndrome
noisy_syndrome[:,1:] = (noisy_syndrome[:,1:] - noisy_syndrome[:,0:-1]) % 2
predicted_logicals_flipped = matching.decode(noisy_syndrome)
actual_logicals_flipped = noise_total@logicals.T % 2
if not np.array_equal(predicted_logicals_flipped, actual_logicals_flipped):

num_errors += 1
return num_errors

We’ll now simulate the performance of the decoder for a range of lattice sizes 𝐿 and physical error rate 𝑝 (taking 𝑞 = 𝑝)
and estimate the threshold:

[9]: %%time

num_shots = 3000
Ls = range(8,13,2)
ps = np.linspace(0.02, 0.04, 7)
log_errors_all_L = []
for L in Ls:

print("Simulating L={}...".format(L))
Hx = toric_code_x_stabilisers(L)
logX = toric_code_x_logicals(L)
log_errors = []
for p in ps:

num_errors = num_decoding_failures_noisy_syndromes(Hx, logX, p, p, num_shots, L)
log_errors.append(num_errors/num_shots)

log_errors_all_L.append(np.array(log_errors))

Simulating L=8...
Simulating L=10...
Simulating L=12...
CPU times: user 11.2 s, sys: 88 ms, total: 11.3 s
Wall time: 11 s

Plotting the results, we find a threshold of around 3%, consistent with the threshold of 2.9% found in this paper:

[10]: %matplotlib inline

plt.figure()
(continues on next page)
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(continued from previous page)

for L, logical_errors in zip(Ls, log_errors_all_L):
std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))

plt.yscale("log")
plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);
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5.1.2 Simulating circuit-level noise

PyMatching can be combined with Stim to decode in the presence of more realistic noise models, where errors can occur
during any gate in the syndrome extraction circuit. To do this, you construct a Stim circuit for the noisy quantum error
correction circuit you want to simulate (e.g. a toric code memory experiment). Stim can sample syndromes (detector
measurement outcomes) from the circuit and also provides a DetectorErrorModel (essentially a generalisation of a
matching graph) which PyMatching uses to construct the Matching object for decoding the syndrome.

Note that the sinter package combines Stim and PyMatching and uses parallelisation over shots to run error correction
simulations more efficiently. It also includes other tools (such as for plotting and analysing data). However, here we
will use Stim and PyMatching directly to demonstrate how the APIs can be used.

We will use the surface code here (instead of the toric code), since surface code example circuits are already included
with Stim. In general you should write your own circuits tailored to the research problem you are trying to solve,
however the example circuits are useful for getting started. Here we will sample shots from surface code circuits over
a range of lattice sizes and circuit-level error rates:

[11]: %%time

import stim

(continues on next page)
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(continued from previous page)

num_shots = 20000
Ls = range(5,14,4)
ps = np.linspace(0.004, 0.01, 7)
log_errors_all_L = []
for L in Ls:

print("Simulating L={}...".format(L))
log_errors = []
for p in ps:

circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
distance=L,
rounds=L,
after_clifford_depolarization=p,
before_round_data_depolarization=p,
after_reset_flip_probability=p,
before_measure_flip_probability=p)

model = circuit.detector_error_model(decompose_errors=True)
matching = Matching.from_detector_error_model(model)
sampler = circuit.compile_detector_sampler()
syndrome, actual_observables = sampler.sample(shots=num_shots, separate_

→˓observables=True)
predicted_observables = matching.decode_batch(syndrome)
num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))
log_errors.append(num_errors/num_shots)

log_errors_all_L.append(np.array(log_errors))

Simulating L=5...
Simulating L=9...
Simulating L=13...
CPU times: user 24.3 s, sys: 228 ms, total: 24.5 s
Wall time: 24.4 s

Now let’s plot the results:

[12]: %matplotlib inline

plt.figure()
for L, logical_errors in zip(Ls, log_errors_all_L):

std_err = (logical_errors*(1-logical_errors)/num_shots)**0.5
plt.errorbar(ps, logical_errors, yerr=std_err, label="L={}".format(L))

plt.yscale("log")
plt.xlabel("Physical error rate")
plt.ylabel("Logical error rate")
plt.legend(loc=0);
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We see a threshold of around 0.7% for circuit-level depolarising noise in the surface code. For more examples of how
to use Stim with PyMatching (e.g. to estimate the required size of a surface code circuit to achieve a given error rate),
see the Stim documentation, including the getting started notebook.

5.2 Python API Documentation

5.2.1 Matching

class pymatching.matching.Matching(graph: Union[csc_matrix, ndarray, PyGraph, Graph, List[List[int]],
stim.DetectorErrorModel, spmatrix] = None, weights: Union[float,
ndarray, List[float]] = None, error_probabilities: Union[float,
ndarray, List[float]] = None, repetitions: int = None, timelike_weights:
Union[float, ndarray, List[float]] = None,
measurement_error_probabilities: Union[float, ndarray, List[float]] =
None, **kwargs)

A class for constructing matching graphs and decoding using the minimum-weight perfect matching decoder. The
matching graph can be constructed using the Matching.add_edge and Matching.add_boundary_edge methods.
Alternatively, it can be loaded from a parity check matrix (a scipy.sparse matrix or numpy.ndarray with one or
two non-zero elements in each column), a NetworkX or retworkx graph, or from a stim.DetectorErrorModel.

Attributes
boundary

Return the indices of the boundary nodes.

num_detectors
The number of detectors in the matching graph.

num_edges
The number of edges in the matching graph
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num_fault_ids
The number of fault IDs defined in the matching graph

num_nodes
The number of nodes in the matching graph
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Methods

add_boundary_edge(node[, fault_ids, weight, ...]) Add an edge connecting node to the boundary
add_edge(node1, node2[, fault_ids, weight, ...]) Add an edge to the matching graph
add_noise() Add noise by flipping edges in the matching graph

with a probability given by the error_probility edge
attribute.

decode(z[, _legacy_num_neighbours, ...]) Decode the syndrome z using minimum-weight per-
fect matching

decode_batch (shots, *[, return_weights, ...]) Decode from a 2D shots array containing a batch of
syndrome measurements.

decode_to_edges_array(syndrome) Decode the syndrome syndrome using minimum-
weight perfect matching, returning the edges in the
solution, given as pairs of detector node indices in a
numpy array.

decode_to_matched_dets_array(syndrome) Decode the syndrome syndrome using minimum-
weight perfect matching, returning the pairs of
matched detection events (or detection events
matched to the boundary) as a 2D numpy array.

decode_to_matched_dets_dict(syndrome) Decode the syndrome syndrome using minimum-
weight perfect matching, returning a dictionary giv-
ing the detection event that each detection event was
matched to (or None if it was matched to the bound-
ary).

draw() Draw the matching graph using matplotlib Draws the
matching graph as a matplotlib graph.

edges() Edges of the matching graph Returns a list of edges
of the matching graph.

ensure_num_fault_ids(min_num_fault_ids) Set the minimum number of fault ids in the matching
graph.

from_check_matrix(check_matrix[, weights, ...]) Load a matching graph from a check matrix
from_detector_error_model(model) Constructs a pymatching.Matching object by loading

from a stim.DetectorErrorModel.
from_detector_error_model_file(dem_path) Construct a pymatching.Matching by loading from a

stim DetectorErrorModel file path.
from_networkx(graph, *[, min_num_fault_ids]) Returns a new pymatching.Matching object from a

NetworkX graph
from_stim_circuit(circuit) Constructs a pymatching.Matching object by loading

from a stim.Circuit
from_stim_circuit_file(stim_circuit_path) Construct a pymatching.Matching by loading from a

stim circuit file path.
get_boundary_edge_data(node) Returns the edge data associated with the boundary

edge (node,).
get_edge_data(node1, node2) Returns the edge data associated with the edge

(node1, node2).
has_boundary_edge(node) Returns True if the boundary edge (node,) is in the

graph.
has_edge(node1, node2) Returns True if edge (node1, node2) is in the graph.
load_from_check_matrix([check_matrix, ...]) Load a matching graph from a check matrix
load_from_networkx(graph, *[,
min_num_fault_ids])

Load a matching graph from a NetworkX graph into
a pymatching.Matching object

load_from_retworkx(graph, *[,
min_num_fault_ids])

Load a matching graph from a retworkX graph

set_boundary_nodes(nodes) Set boundary nodes in the matching graph.
to_networkx() Convert to NetworkX graph Returns a NetworkX

graph corresponding to the matching graph.
to_retworkx() Convert to retworkx graph Returns a retworkx graph

object corresponding to the matching graph.
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__init__(graph: Union[csc_matrix, ndarray, PyGraph, Graph, List[List[int]], stim.DetectorErrorModel,
spmatrix] = None, weights: Union[float, ndarray, List[float]] = None, error_probabilities:
Union[float, ndarray, List[float]] = None, repetitions: int = None, timelike_weights: Union[float,
ndarray, List[float]] = None, measurement_error_probabilities: Union[float, ndarray, List[float]]
= None, **kwargs)

Constructor for the Matching class

Parameters
graph

[scipy.spmatrix or numpy.ndarray or networkx.Graph or stim.DetectorErrorModel, op-
tional] The matching graph to be decoded with minimum-weight perfect matching, given
either as a binary parity check matrix (scipy sparse matrix or numpy.ndarray), a NetworkX
or retworkx graph, or a Stim DetectorErrorModel. Each edge in the NetworkX or ret-
workx graph can have optional attributes fault_ids, weight and error_probability.
fault_ids should be an int or a set of ints. Each fault id corresponds to a self-inverse
fault that is flipped when the corresponding edge is flipped. These self-inverse faults could
correspond to physical Pauli errors (physical frame changes) or to the logical observables
that are flipped by the fault (a logical frame change, equivalent to an obersvable ID in an
error instruction in a Stim detector error model). The fault_ids attribute was previously
named qubit_id in an earlier version of PyMatching, and qubit_id is still accepted instead
of fault_ids in order to maintain backward compatibility. Each weight attribute should be
a non-negative float. If every edge is assigned an error_probability between zero and one,
then the add_noise method can be used to simulate noise and flip edges independently in
the graph. By default, None

weights
[float or numpy.ndarray, optional] If graph is given as a scipy or numpy array, weights gives
the weights of edges in the matching graph corresponding to columns of graph. If weights
is a numpy.ndarray, it should be a 1D array with length equal to graph.shape[1]. If weights
is a float, it is used as the weight for all edges corresponding to columns of graph. By
default None, in which case all weights are set to 1.0 This argument was renamed from
spacelike_weights in PyMatching v2.0, but spacelike_weights is still accepted in place of
weights for backward compatibility.

error_probabilities
[float or numpy.ndarray, optional] The probabilities with which an error occurs on each
edge corresponding to a column of the check matrix. If a single float is given, the same
error probability is used for each edge. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in the check matrix. This parameter is only needed
for the Matching.add_noise method, and not for decoding. By default None

repetitions
[int, optional] The number of times the stabiliser measurements are repeated, if the mea-
surements are noisy. This option is only used if check_matrix is provided as a check matrix,
not a NetworkX graph. By default None

timelike_weights
[float, optional] If check_matrix is given as a scipy or numpy array and repetitions>1,
timelike_weights gives the weight of timelike edges. If a float is given, all timelike edges
weights are set to the same value. If a numpy array of size (check_matrix.shape[0],) is
given, the edge weight for each vertical timelike edge associated with the i`th check (row)
of `check_matrix is set to timelike_weights[i]. By default None, in which case all timelike
weights are set to 1.0

measurement_error_probabilities
[float, optional] If check_matrix is given as a scipy or numpy array and repetitions>1,
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gives the probability of a measurement error to be used for the add_noise method. If
a float is given, all measurement errors are set to the same value. If a numpy ar-
ray of size (check_matrix.shape[0],) is given, the error probability for each vertical
timelike edge associated with the i`th check (row) of `check_matrix is set to measure-
ment_error_probabilities[i]. By default None

**kwargs
The remaining keyword arguments are passed to Matching.load_from_check_matrix if
graph is a check matrix.

Examples

>>> import pymatching
>>> import math
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids={0}, weight=0.1)
>>> m.add_edge(1, 2, fault_ids={1}, weight=0.15)
>>> m.add_edge(2, 3, fault_ids={2, 3}, weight=0.2)
>>> m.add_edge(0, 3, fault_ids={4}, weight=0.1)
>>> m.set_boundary_nodes({3})
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>

Matching objects can also be created from a check matrix (provided as a scipy.sparse matrix, dense numpy
array, or list of lists): >>> import pymatching >>> m = pymatching.Matching([[1, 1, 0, 0], [0, 1, 1, 0], [0,
0, 1, 1]]) >>> m <pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>

add_boundary_edge(node: int, fault_ids: Optional[Union[int, Set[int]]] = None, weight: float = 1.0,
error_probability: Optional[float] = None, *, merge_strategy: str = 'disallow',
**kwargs)→ None

Add an edge connecting node to the boundary

Parameters
node: int

The index of the node to be connected to the boundary with a boundary edge

fault_ids: set[int] or int, optional
The IDs of any self-inverse faults which are flipped when the edge is flipped, and which
should be tracked. This could correspond to the IDs of physical Pauli errors that occur
when this edge flips (physical frame changes). Alternatively, this attribute can be used to
store the IDs of any logical observables that are flipped when an error occurs on an edge
(logical frame changes). By default None

weight: float, optional
The weight of the edge. The weight can be positive or negative, but its absolute value cannot
exceed the maximum absolute edge weight of 2**24-1=16,777,215. If the absolute value
of the weight exceeds this value, the edge will not be added to the graph and a warning will
be raised. By default 1.0

error_probability: float, optional
The probability that the edge is flipped. This is used by the add_noise() method to sample
from the distribution defined by the matching graph (in which each edge is flipped inde-
pendently with the corresponding error_probability). By default None

merge_strategy: str, optional
Which strategy to use if the edge (node1, node2) is already in the graph. The available
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options are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”.
“disallow” raises a ValueError if the edge (node1, node2) is already present. The “inde-
pendent” strategy assumes that the existing edge (node1, node2) and the edge being added
represent independent error mechanisms, and they are merged into a new edge with updated
weights and error_probabilities accordingly (it is assumed that each weight represents the
log-likelihood ratio log((1-p)/p) where p is the error_probability and where the natural
logarithm is used. The fault_ids associated with the existing edge are kept only, since
where the natural logarithm is used. The fault_ids associated with the existing edge are
kept only, since the code has distance 2 if parallel edges have different fault_ids anyway).
The “smallest-weight” strategy keeps only the new edge if it has a smaller weight than the
existing edge, otherwise the graph is left unchanged. The “keep-original” strategy keeps
only the existing edge, and ignores the edge being added. The “replace” strategy always
keeps the edge being added, replacing the existing edge. By default, “disallow”

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> print(m.num_edges)
2
>>> print(m.num_nodes)
2
>>> import math
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0, fault_ids={0}, weight=math.log((1-0.05)/0.05), error_
→˓probability=0.05)
>>> m.add_edge(0, 1, fault_ids={1}, weight=math.log((1-0.1)/0.1), error_
→˓probability=0.1)
>>> m.add_boundary_edge(1, fault_ids={2}, weight=math.log((1-0.2)/0.2), error_
→˓probability=0.2)
>>> m
<pymatching.Matching object with 2 detectors, 0 boundary nodes, and 3 edges>
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0, fault_ids=0, weight=2)
>>> m.add_boundary_edge(0, fault_ids=1, weight=1, merge_strategy="smallest-
→˓weight")
>>> m.add_boundary_edge(0, fault_ids=2, weight=3, merge_strategy="smallest-
→˓weight")
>>> m.edges()
[(0, None, {'fault_ids': {1}, 'weight': 1.0, 'error_probability': -1.0})]
>>> m.boundary # Using Matching.add_boundary_edge, no boundary nodes are added␣
→˓(the boundary is a virtual node)
set()

add_edge(node1: int, node2: int, fault_ids: Optional[Union[int, Set[int]]] = None, weight: float = 1.0,
error_probability: Optional[float] = None, *, merge_strategy: str = 'disallow', **kwargs)→ None

Add an edge to the matching graph

Parameters
node1: int

The index of node1 in the new edge (node1, node2)
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node2: int
The index of node2 in the new edge (node1, node2)

fault_ids: set[int] or int, optional
The indices of any self-inverse faults which are flipped when the edge is flipped, and which
should be tracked. This could correspond to the IDs of physical Pauli errors that occur
when this edge flips (physical frame changes). Alternatively, this attribute can be used
to store the IDs of any logical observables that are flipped when an error occurs on an
edge (logical frame changes). In earlier versions of PyMatching, this attribute was instead
named qubit_id (since for CSS codes and physical frame changes, there can be a one-to-one
correspondence between each fault ID and physical qubit ID). For backward compatibility,
qubit_id can still be used instead of fault_ids as a keyword argument. By default None

weight: float, optional
The weight of the edge. The weight can be positive or negative, but its absolute value cannot
exceed the maximum absolute edge weight of 2**24-1=16,777,215. If the absolute value
of the weight exceeds this value, the edge will not be added to the graph and a warning will
be raised. By default 1.0

error_probability: float, optional
The probability that the edge is flipped. This is used by the add_noise() method to sample
from the distribution defined by the matching graph (in which each edge is flipped inde-
pendently with the corresponding error_probability). By default None

merge_strategy: str, optional
Which strategy to use if the edge (node1, node2) is already in the graph. The available
options are “disallow”, “independent”, “smallest-weight”, “keep-original” and “replace”.
“disallow” raises a ValueError if the edge (node1, node2) is already present. The “inde-
pendent” strategy assumes that the existing edge (node1, node2) and the edge being added
represent independent error mechanisms, and they are merged into a new edge with updated
weights and error_probabilities accordingly (it is assumed that each weight represents the
log-likelihood ratio log((1-p)/p) where p is the error_probability and where the natural
logarithm is used. The fault_ids associated with the existing edge are kept only, since
where the natural logarithm is used. The fault_ids associated with the existing edge are
kept only, since the code has distance 2 if parallel edges have different fault_ids anyway).
The “smallest-weight” strategy keeps only the new edge if it has a smaller weight than the
existing edge, otherwise the graph is left unchanged. The “keep-original” strategy keeps
only the existing edge, and ignores the edge being added. The “replace” strategy always
keeps the edge being added, replacing the existing edge. By default, “disallow”

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> print(m.num_edges)
2
>>> print(m.num_nodes)
3
>>> import math
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids=2, weight=math.log((1-0.05)/0.05), error_
→˓probability=0.05)

(continues on next page)

5.2. Python API Documentation 27



PyMatching, Release 2.1.0
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>>> m.add_edge(1, 2, fault_ids=0, weight=math.log((1-0.1)/0.1), error_
→˓probability=0.1)
>>> m.add_edge(2, 0, fault_ids={1, 2}, weight=math.log((1-0.2)/0.2), error_
→˓probability=0.2)
>>> m
<pymatching.Matching object with 3 detectors, 0 boundary nodes, and 3 edges>
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids=0, weight=2)
>>> m.add_edge(0, 1, fault_ids=1, weight=1, merge_strategy="smallest-weight")
>>> m.add_edge(0, 1, fault_ids=2, weight=3, merge_strategy="smallest-weight")
>>> m.edges()
[(0, 1, {'fault_ids': {1}, 'weight': 1.0, 'error_probability': -1.0})]

add_noise()→ Optional[Tuple[ndarray, ndarray]]
Add noise by flipping edges in the matching graph with a probability given by the error_probility edge
attribute. The error_probability must be set for all edges for this method to run, otherwise it returns
None. All boundary nodes are always given a 0 syndrome.

Returns
numpy.ndarray of dtype int

Noise vector (binary numpy int array of length self.num_fault_ids)

numpy.ndarray of dtype int
Syndrome vector (binary numpy int array of length self.num_detectors if there is no bound-
ary, or self.num_detectors+len(self.boundary) if there are boundary nodes)

property boundary: Set[int]

Return the indices of the boundary nodes. Note that this property is a copy of the set of boundary nodes.
In-place modification of the set Matching.boundary will not change the boundary nodes of the matching
graph - boundary nodes should instead be set or updated using the Matching.set_boundary_nodes method.

Returns
set of int

The indices of the boundary nodes

decode(z: Union[ndarray, List[int]], _legacy_num_neighbours: Optional[int] = None,
_legacy_return_weight: Optional[bool] = None, *, return_weight: bool = False, **kwargs)→
Union[ndarray, Tuple[ndarray, int]]

Decode the syndrome z using minimum-weight perfect matching

Parameters
z

[numpy.ndarray] A binary syndrome vector to decode. The number of elements in z should
equal the number of nodes in the matching graph. If z is a 1D array, then z[i] is the syndrome
at node i of the matching graph. If z is 2D then z[i,j] is the difference (modulo 2) between
the (noisy) measurement of stabiliser i in time step j+1 and time step j (for the case where
the matching graph is constructed from a check matrix with repetitions>1).

_legacy_num_neighbours: int
The num_neighbours argument available in PyMatching versions 0.x.x is not available in
PyMatching v2.0.0 or later, since it introduced an approximation that is not relevant or
required in the new version 2 implementation. Providing num_neighbours as this second
positional argument will raise an exception in a future version of PyMatching.

28 Chapter 5. Acknowledgements



PyMatching, Release 2.1.0

_legacy_return_weight: bool
return_weight used to be available as this third positional argument, but should now be
set as a keyword argument. In a future version of PyMatching, it will only be possible to
provide return_weight as a keyword argument.

return_weight
[bool, optional] If return_weight==True, the sum of the weights of the edges in the mini-
mum weight perfect matching is also returned. By default False

Returns
correction

[numpy.ndarray or list[int]] A 1D numpy array of ints giving the minimum-weight cor-
rection operator as a binary vector. The number of elements in correction is one greater
than the largest fault ID. The ith element of correction is 1 if the minimum-weight perfect
matching (MWPM) found by PyMatching contains an odd number of edges that have i as
one of the fault_ids, and is 0 otherwise. If each edge in the matching graph is assigned a
unique integer in its fault_ids attribute, then the locations of nonzero entries in correction
correspond to the edges in the MWPM. However, fault_ids can instead be used, for exam-
ple, to store IDs of the physical or logical frame changes that occur when an edge flips (see
the documentation for Matching.add_edge for more information).

weight
[float] Present only if return_weight==True. The sum of the weights of the edges in the
minimum-weight perfect matching.

Raises
ValueError

If there is no error consistent with the provided syndrome. Occurs if the syndrome has odd
parity in the support of a connected component without a boundary.

Examples

>>> import pymatching
>>> import numpy as np
>>> check_matrix = np.array([[1, 1, 0, 0, 0],
... [0, 1, 1, 0, 0],
... [0, 0, 1, 1, 0],
... [0, 0, 0, 1, 1]])
>>> m = pymatching.Matching(check_matrix)
>>> z = np.array([0, 1, 0, 0])
>>> m.decode(z)
array([1, 1, 0, 0, 0], dtype=uint8)

Each bit in the correction provided by Matching.decode corresponds to a fault_ids. The index of a bit in
a correction corresponds to its fault_ids. For example, here an error on edge (0, 1) flips fault_ids 2 and 3,
as inferred by the minimum-weight correction:

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1, fault_ids={2, 3})
>>> m.add_edge(1, 2, fault_ids=1)
>>> m.add_edge(2, 0, fault_ids=0)
>>> m.decode([1, 1, 0])
array([0, 0, 1, 1], dtype=uint8)
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To decode with a phenomenological noise model (qubits and measurements both suffering bit-flip errors),
you can provide a check matrix and number of syndrome repetitions to construct a matching graph with a
time dimension (where nodes in consecutive time steps are connected by an edge), and then decode with a
2D syndrome (dimension 0 is space, dimension 1 is time):

>>> import pymatching
>>> import numpy as np
>>> np.random.seed(0)
>>> check_matrix = np.array([[1, 1, 0, 0],
... [0, 1, 1, 0],
... [0, 0, 1, 1]])
>>> m = pymatching.Matching(check_matrix, repetitions=5)
>>> data_qubit_noise = (np.random.rand(4, 5) < 0.1).astype(np.uint8)
>>> print(data_qubit_noise)
[[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 1]
[1 1 0 0 0]]
>>> cumulative_noise = (np.cumsum(data_qubit_noise, 1) % 2).astype(np.uint8)
>>> syndrome = check_matrix@cumulative_noise % 2
>>> print(syndrome)
[[0 0 0 0 0]
[0 0 0 0 1]
[1 0 0 0 1]]
>>> syndrome[:,:-1] ^= (np.random.rand(3, 4) < 0.1).astype(np.uint8)
>>> # Take the parity of consecutive timesteps to construct a difference␣
→˓syndrome:
>>> syndrome[:,1:] = syndrome[:,:-1] ^ syndrome[:,1:]
>>> m.decode(syndrome)
array([0, 0, 1, 0], dtype=uint8)

decode_batch(shots: ndarray, *, return_weights: bool = False, bit_packed_shots: bool = False,
bit_packed_predictions: bool = False)→ Union[ndarray, Tuple[ndarray, ndarray]]

Decode from a 2D shots array containing a batch of syndrome measurements. A faster alternative to using
pymatching.Matching.decode and iterating over the shots in Python.

Parameters
shots

[np.ndarray] A 2D numpy array of shots to decode, of dtype=np.uint8.

If bit_packed_shots==False, then shots should have shape shots.shape=(num_shots, syn-
drome_length), where num_shots is the number of shots (samples), and syndrome_length
is the length of the binary syndrome vector to be decoded for each shot. If
len(self.boundary)==0 (e.g. if there is no boundary, or only a virtual boundary node,
the default when loading from stim) then syndrome_length=self.num_detectors. However,
syndrome_length is permitted to be as high as self.num_nodes in case the graph contains de-
tectors nodes with an index larger than self.num_detectors-1 (when len(self.boundary)>0).

If bit_packed_shots==True then shots should have shape shots.shape=(num_shots,
math.ceil(syndrome_length / 8)). Bit packing should be done using little endian order on
the last axis (like np.packbits(data, bitorder='little', axis=1)), so that the bit
for detection event m in shot s can be found at (dets[s, m // 8] >> (m % 8)) & 1.

return_weights
[bool] If True, then also return a numpy array containing the weights of the solutions for
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all the shots. By default, False.

bit_packed_shots
[bool] Set to True to provide shots as a bit-packed array, such that the bit for detection event
m in shot s can be found at (dets[s, m // 8] >> (m % 8)) & 1.

bit_packed_predictions
[bool] Set to True if the returned predictions should be bit-packed, with the bit for fault id
m in shot s in (obs[s, m // 8] >> (m % 8)) & 1

Returns
predictions: np.ndarray

The batch of predictions output by the decoder, a binary numpy array of dtype=np.uint8
and with shape predictions.shape=(num_shots, self.num_fault_ids). predictions[i, j]=1 iff
the decoder predicts that fault id j was flipped in the shot i.

weights: np.ndarray
The weights of the MWPM solutions, a numpy array of dtype=float. weights[i] is the
weight of the MWPM solution in shot i.

Examples

>>> import pymatching
>>> import stim
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
... distance=5,
... rounds=5,
... after_clifford_depolarization=0.005)
>>> model = circuit.detector_error_model(decompose_errors=True)
>>> matching = pymatching.Matching.from_detector_error_model(model)
>>> sampler = circuit.compile_detector_sampler()
>>> syndrome, actual_observables = sampler.sample(shots=10000, separate_
→˓observables=True)
>>> syndrome.shape
(10000, 120)
>>> actual_observables.shape
(10000, 1)
>>> predicted_observables = matching.decode_batch(syndrome)
>>> predicted_observables.shape
(10000, 1)
>>> num_errors = np.sum(np.any(predicted_observables != actual_observables,␣
→˓axis=1))

We can also decode bit-packed shots, and return bit-packed predictions: >>> import pymatch-
ing >>> import stim >>> circuit = stim.Circuit.generated(“surface_code:rotated_memory_x”,
. . . distance=5, . . . rounds=5, . . . after_clifford_depolarization=0.005) >>> model
= circuit.detector_error_model(decompose_errors=True) >>> matching = pymatch-
ing.Matching.from_detector_error_model(model) >>> sampler = circuit.compile_detector_sampler()
>>> syndrome, actual_observables = sampler.sample(shots=10000, separate_observables=True,
bit_packed=True) >>> syndrome.shape (10000, 15) >>> actual_observables.shape (10000,
1) >>> predicted_observables = matching.decode_batch(syndrome, bit_packed_shots=True,
bit_packed_predictions=True) >>> predicted_observables.shape (10000, 1) >>> num_errors =
np.sum(np.any(predicted_observables != actual_observables, axis=1))
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decode_to_edges_array(syndrome: Union[ndarray, List[int]])→ ndarray
Decode the syndrome syndrome using minimum-weight perfect matching, returning the edges in the solu-
tion, given as pairs of detector node indices in a numpy array.

Parameters
syndrome

[numpy.ndarray] A binary syndrome vector to decode. The number of elements in syn-
drome should equal the number of nodes in the matching graph. If syndrome is a 1D array,
then syndrome[i] is the syndrome at node i of the matching graph. If syndrome is 2D then
syndrome[i,j] is the difference (modulo 2) between the (noisy) measurement of stabiliser i
in time step j+1 and time step j (for the case where the matching graph is constructed from
a check matrix with repetitions>1).

Returns
numpy.ndarray

A 2D array edges giving the edges in the matching solution as pairs of detector nodes (or as
a detector node and the boundary, for a boundary edge). If there are num_predicted_edges
edges then the shape of edges is edges.shape=(num_predicted_edges, 2), and edge i is
between detector node edges[i, 0] and detector node edges[i, 1]. For a boundary edge i
between a detector node k and the boundary (either a boundary node or the virtual boundary
node), then pairs[i,0] is k, and pairs[i,1]=-1 denotes the boundary (the boundary is always
denoted by -1 and is always in the second column).

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> m.add_edge(4, 5)
>>> m.add_edge(5, 6)
>>> edges = m.decode_to_edges_array([0, 1, 0, 0, 1, 0, 1])
>>> print(edges)
[[ 0 1]
[ 0 -1]
[ 5 4]
[ 5 6]]

decode_to_matched_dets_array(syndrome: Union[ndarray, List[int]])→ ndarray
Decode the syndrome syndrome using minimum-weight perfect matching, returning the pairs of matched
detection events (or detection events matched to the boundary) as a 2D numpy array. Each pair of matched
detection events returned by this method corresponds to a shortest path between the detection events in the
solution to the problem: if you instead want the set of all edges in the solution (pairs of detector nodes),
use Matching.decode_to_edges instead. Note that, unlike Matching.decode, Matching.decode_batch and
Matching.decode_to_edges_array, this method currently only supports non-negative edge weights.

Parameters
syndrome

[numpy.ndarray] A binary syndrome vector to decode. The number of elements in syn-
drome should equal the number of nodes in the matching graph. If syndrome is a 1D array,

32 Chapter 5. Acknowledgements



PyMatching, Release 2.1.0

then syndrome[i] is the syndrome at node i of the matching graph. If syndrome is 2D then
syndrome[i,j] is the difference (modulo 2) between the (noisy) measurement of stabiliser i
in time step j+1 and time step j (for the case where the matching graph is constructed from
a check matrix with repetitions>1).

Returns
numpy.ndarray

An 2D array pairs giving the endpoints of the paths between detection events in the
solution of the matching. If there are num_paths paths then the shape of pairs is
pairs.shape=(num_paths, 2), and path i starts at detection event pairs[i,0] and ends at
detection event pairs[i,1]. For a path i connecting a detection event to the boundary (either
a boundary node or the virtual boundary node), then pairs[i,0] is the index of the detection
event, and pairs[i,1]=-1 denotes the boundary.

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> m.add_edge(4, 5)
>>> m.add_edge(5, 6)
>>> matched_dets = m.decode_to_matched_dets_array([0, 1, 0, 0, 1, 0, 1])
>>> print(matched_dets)
[[ 1 -1]
[ 4 6]]

decode_to_matched_dets_dict(syndrome: Union[ndarray, List[int]])→ Union[ndarray, Tuple[ndarray,
int]]

Decode the syndrome syndrome using minimum-weight perfect matching, returning a dictionary giving the
detection event that each detection event was matched to (or None if it was matched to the boundary). Note
that (unlike Matching.decode), this method currently only supports non-negative edge weights.

Parameters
syndrome

[numpy.ndarray] A binary syndrome vector to decode. The number of elements in syn-
drome should equal the number of nodes in the matching graph. If syndrome is a 1D array,
then syndrome[i] is the syndrome at node i of the matching graph. If syndrome is 2D then
syndrome[i,j] is the difference (modulo 2) between the (noisy) measurement of stabiliser i
in time step j+1 and time step j (for the case where the matching graph is constructed from
a check matrix with repetitions>1).

Returns
dict

A dictionary mate giving the detection event that each detection event is matched to (or
None if it is matched to the boundary). If detection event i is matched to detection event j,
then mate[i]=j. If detection event i is matched to the boundary (either a boundary node or
the virtual boundary node), then mate[i]=None.
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Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_boundary_edge(0)
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.add_edge(2, 3)
>>> m.add_edge(3, 4)
>>> d = m.decode_to_matched_dets_dict([1, 0, 0, 1, 1])
>>> d[3]
4
>>> d
{0: None, 3: 4, 4: 3}

draw()→ None
Draw the matching graph using matplotlib Draws the matching graph as a matplotlib graph. Detector nodes
are filled grey and boundary nodes are filled white. The line thickness of each edge is determined from
its weight (with min and max thicknesses of 0.2 pts and 2 pts respectively). Each node is labelled with its
id/index, and each edge is labelled with its fault_ids. Note that you may need to call plt.figure() before and
plt.show() after calling this function.

edges()→ List[Tuple[int, Optional[int], Dict]]
Edges of the matching graph Returns a list of edges of the matching graph. Each edge is a tuple (source,
target, attr) where source and target are ints corresponding to the indices of the source and target
nodes, and attr is a dictionary containing the attributes of the edge. The dictionary attr has keys fault_ids
(a set of ints), weight (the weight of the edge, set to 1.0 if not specified), and error_probability (the error
probability of the edge, set to -1 if not specified).

Returns
List of (int, int, dict) tuples

A list of edges of the matching graph

ensure_num_fault_ids(min_num_fault_ids: int)→ None
Set the minimum number of fault ids in the matching graph.

Let max_id be the maximum fault id assigned to any of the edges in a pymatching.Matching graph m. Then
setting m.ensure_num_fault_ids(n) will ensure that Matching.num_fault_ids=max(n, max_id). Note that
Matching.num_fault_ids sets the length of the correction array output by Matching.decode.

Parameters
min_num_fault_ids: int

The required minimum number of fault ids in the matching graph

static from_check_matrix(check_matrix: Union[csc_matrix, spmatrix, ndarray, List[List[int]]], weights:
Optional[Union[float, ndarray, List[float]]] = None, error_probabilities:
Optional[Union[float, ndarray, List[float]]] = None, repetitions:
Optional[int] = None, timelike_weights: Optional[Union[float, ndarray,
List[float]]] = None, measurement_error_probabilities:
Optional[Union[float, ndarray, List[float]]] = None, *, faults_matrix:
Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]] = None,
merge_strategy: str = 'smallest-weight', use_virtual_boundary_node: bool =
False, **kwargs)→ Matching

Load a matching graph from a check matrix
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Parameters
check_matrix

[scipy.csc_matrix or numpy.ndarray or List[List[int]]] The quantum code to be decoded
with minimum-weight perfect matching, given as a binary check matrix (scipy sparse ma-
trix or numpy.ndarray)

weights
[float or numpy.ndarray, optional] If check_matrix is given as a scipy or numpy array,
weights gives the weights of edges in the matching graph corresponding to columns of
check_matrix. If weights is a numpy.ndarray, it should be a 1D array with length equal
to check_matrix.shape[1]. If weights is a float, it is used as the weight for all edges cor-
responding to columns of check_matrix. By default None, in which case all weights are
set to 1.0 This argument was renamed from spacelike_weights in PyMatching v2.0, but
spacelike_weights is still accepted in place of weights for backward compatibility.

error_probabilities
[float or numpy.ndarray, optional] The probabilities with which an error occurs on each
edge associated with a column of check_matrix. If a single float is given, the same error
probability is used for each column. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in check_matrix. This parameter is only needed for
the Matching.add_noise method, and not for decoding. By default None

repetitions
[int, optional] The number of times the stabiliser measurements are repeated, if the mea-
surements are noisy. By default None

timelike_weights
[float or numpy.ndarray, optional] If repetitions>1, timelike_weights gives the weight of
timelike edges. If a float is given, all timelike edges weights are set to the same value.
If a numpy array of size (check_matrix.shape[0],) is given, the edge weight for each ver-
tical timelike edge associated with the i`th check (row) of `check_matrix is set to time-
like_weights[i]. By default None, in which case all timelike weights are set to 1.0

measurement_error_probabilities
[float or numpy.ndarray, optional] If repetitions>1, gives the probability of a measurement
error to be used for the add_noise method. If a float is given, all measurement errors are
set to the same value. If a numpy array of size (check_matrix.shape[0],) is given, the
error probability for each vertical timelike edge associated with the i`th check (row) of
`check_matrix is set to measurement_error_probabilities[i]. This argument can also be
given using the keyword argument measurement_error_probability to maintain backward
compatibility with previous versions of Pymatching. By default None

faults_matrix: `scipy.csc_matrix` or `numpy.ndarray` or List[List[int]], optional
A binary array of faults, which can be used to set the fault_ids for each edge in the con-
structed matching graph. The fault_ids attribute of the edge corresponding to column j
of check_matrix includes fault id i if and only if faults[i,j]==1. Therefore, the number
of columns in faults must match the number of columns in check_matrix. By default,
faults is just set to the identity matrix, in which case the edge corresponding to column
j of check_matrix has fault_ids={j}. As an example, if check_matrix corresponds to the X
check matrix of a CSS stabiliser code, then you could set faults to the X logical operators:
in this case the output of Matching.decode will be a binary array correction where correc-
tion[i]==1 if the decoder predicts that the logical operator corresponding to row i of faults
was flipped, given the observed syndrome.

merge_strategy: str, optional
Which strategy to use when adding an edge (node1, node2) that is already in the graph. The
available options are “disallow”, “independent”, “smallest-weight”, “keep-original” and
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“replace”. “disallow” raises a ValueError if the edge (node1, node2) is already present.
The “independent” strategy assumes that the existing edge (node1, node2) and the edge
being added represent independent error mechanisms, and they are merged into a new edge
with updated weights and error_probabilities accordingly (it is assumed that each weight
represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and where
the natural logarithm is used. The fault_ids associated with the existing edge are kept
only, since the code has distance 2 if parallel edges have different fault_ids anyway). The
“smallest-weight” strategy keeps only the new edge if it has a smaller weight than the
existing edge, otherwise the graph is left unchanged. The “keep-original” strategy keeps
only the existing edge, and ignores the edge being added. The “replace” strategy always
keeps the edge being added, replacing the existing edge. By default, “smallest-weight”

use_virtual_boundary_node: bool, optional
This option determines how columns are handled if they contain only a single 1 (rep-
resenting a boundary edge). Consider a column contains a single 1 at row index i. If
use_virtual_boundary_node=False, then this column will be handled by adding an edge
(i, check_matrix.shape[0]), and marking the node check_matrix.shape[0] as a bound-
ary node with Matching.set_boundary(check_matrix.shape[0]). The resulting graph will
contain check_matrix.shape[0]+1 nodes, the largest of which is the boundary node. If
use_virtual_boundary_node=True then instead the boundary is a virtual node, and this
column is handled with Matching.add_boundary_edge(i, . . . ). The resulting graph will
contain check_matrix.shape[0] nodes, and there is no boundary node. Both options are
handled identically by the decoder, although use_virtual_boundary_node=True is recom-
mended since it is simpler (with a one-to-one correspondence between nodes and rows of
check_matrix), and is also slightly more efficient. By default, False (for backward compat-
ibility)

Examples

>>> import pymatching
>>> m = pymatching.Matching.from_check_matrix([[1, 1, 0, 0], [0, 1, 1, 0], [0,␣
→˓0, 1, 1]])
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>

Matching objects can also be initialised from a sparse scipy matrix:

>>> import pymatching
>>> from scipy.sparse import csc_matrix
>>> check_matrix = csc_matrix([[1, 1, 0], [0, 1, 1]])
>>> m = pymatching.Matching.from_check_matrix(check_matrix)
>>> m
<pymatching.Matching object with 2 detectors, 1 boundary node, and 3 edges>

static from_detector_error_model(model: stim.DetectorErrorModel)→ pymatching.Matching
Constructs a pymatching.Matching object by loading from a stim.DetectorErrorModel.

A stim.DetectorErrorModel (DEM) describes a circuit-level noise model in a quantum error correction
protocol, and is defined in the Stim documentation: https://github.com/quantumlib/Stim/blob/main/doc/
file_format_dem_detector_error_model.md. When loading from a DEM, there is a one-to-one correspon-
dence with a detector in the DEM and a node in the pymatching.Matching graph, and each graphlike error
in the DEM becomes an edge (or merged into a parallel edge) in the pymatching.Matching graph. A error
instruction in the DEM is graphlike if it causes either one or two detection events, and can be either its
own DEM instruction, or within a suggested decomposition of a larger DEM instruction. Error instruction
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in the DEM that cause more than two detection events and do not have a suggested decomposition into
edges are ignored. There set of fault_ids assigned to a pymatching.Matching graph edge is the set of logi-
cal_observable indices associated with the corresponding graphlike fault mechanism in the DEM. Parallel
edges are merged, with weights chosen on the assumption that the error mechanisms associated with the
parallel edges are independent. the logical_observable indices associated with the first added parallel edge
are kept for the merged edge. If you are loading a pymatching.Matching graph from a DEM, you may be
interested in using the sinter Python package for monte carlo sampling: https://pypi.org/project/sinter/.

Parameters
model

[stim.DetectorErrorModel] A stim DetectorErrorModel, with all error mechanisms either
graphlike, or decomposed into graphlike error mechanisms

Returns
pymatching.Matching

A pymatching.Matching object representing the graphlike error mechanisms in model

Examples

>>> import stim
>>> import pymatching
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
... distance=5,
... rounds=5,
... after_clifford_depolarization=0.005)
>>> model = circuit.detector_error_model(decompose_errors=True)
>>> matching = pymatching.Matching.from_detector_error_model(model)
>>> matching
<pymatching.Matching object with 120 detectors, 0 boundary nodes, and 502 edges>

static from_detector_error_model_file(dem_path: str)→ Matching
Construct a pymatching.Matching by loading from a stim DetectorErrorModel file path.

Parameters
dem_path

[str] The path of the detector error model file

Returns
pymatching.Matching

A pymatching.Matching object representing the graphlike error mechanisms in the stim
DetectorErrorModel in the file dem_path

static from_networkx(graph: Graph, *, min_num_fault_ids: Optional[int] = None)→ Matching
Returns a new pymatching.Matching object from a NetworkX graph

Parameters
graph

[networkx.Graph] Each edge in the NetworkX graph can have optional attributes
fault_ids, weight and error_probability. fault_ids should be an int or a set
of ints. Each fault id corresponds to a self-inverse fault that is flipped when the corre-
sponding edge is flipped. These self-inverse faults could correspond to physical Pauli er-
rors (physical frame changes) or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a
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Stim detector error model). The fault_ids attribute determines how the solution is out-
put via pymatching.Matching.decode: the binary correction array has length pymatch-
ing.Matching.num_fault_ids, and correction[i] is 1 if and only if an odd number of edges
in the MWPM solution have i in their fault_ids attribute. The fault_ids attribute was pre-
viously named qubit_id in an earlier version of PyMatching, and qubit_id is still accepted
instead of fault_ids in order to maintain backward compatibility. Each weight attribute
should be a non-negative float. If every edge is assigned an error_probability between
zero and one, then the add_noise method can be used to simulate noise and flip edges
independently in the graph.

min_num_fault_ids: int
Sets the minimum number of fault ids in the matching graph. Let max_id be the maxi-
mum fault id assigned to any of the edges in the graph. Then setting this argument will
ensure that Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Match-
ing.num_fault_ids sets the length of the correction array output by Matching.decode.

Examples

>>> import pymatching
>>> import networkx as nx
>>> import math
>>> g = nx.Graph()
>>> g.add_edge(0, 1, fault_ids=0, weight=math.log((1-0.1)/0.1), error_
→˓probability=0.1)
>>> g.add_edge(1, 2, fault_ids=1, weight=math.log((1-0.15)/0.15), error_
→˓probability=0.15)
>>> g.nodes[0]['is_boundary'] = True
>>> g.nodes[2]['is_boundary'] = True
>>> m = pymatching.Matching.from_networkx(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>

static from_stim_circuit(circuit: stim.Circuit)→ pymatching.Matching
Constructs a pymatching.Matching object by loading from a stim.Circuit

Parameters
circuit

[stim.Circuit] A stim circuit containing error mechanisms that are all either graphlike, or
decomposable into graphlike error mechanisms

Returns
pymatching.Matching

A pymatching.Matching object representing the graphlike error mechanisms in circuit, with
any hyperedge error mechanisms decomposed into graphlike error mechanisms. Parallel
edges are merged using merge_strategy=”independent”.
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Examples

>>> import stim
>>> import pymatching
>>> circuit = stim.Circuit.generated("surface_code:rotated_memory_x",
... distance=5,
... rounds=5,
... after_clifford_depolarization=0.005)
>>> matching = pymatching.Matching.from_stim_circuit(circuit)
>>> matching
<pymatching.Matching object with 120 detectors, 0 boundary nodes, and 502 edges>

static from_stim_circuit_file(stim_circuit_path: str)→ Matching
Construct a pymatching.Matching by loading from a stim circuit file path.

Parameters
stim_circuit_path

[str] The path of the stim circuit file

Returns
pymatching.Matching

A pymatching.Matching object representing the graphlike error mechanisms in the
stim circuit in the file stim_circuit_path, with any hyperedge error mechanisms
decomposed into graphlike error mechanisms. Parallel edges are merged using
merge_strategy=”independent”.

get_boundary_edge_data(node: int)→ Dict[str, Union[Set[int], float]]
Returns the edge data associated with the boundary edge (node,).

Parameters
node: int

The index of the node

Returns
dict

A dictionary with keys fault_ids, weight and error_probability, and values giving the re-
spective boundary edge attributes

get_edge_data(node1: int, node2: int)→ Dict[str, Union[Set[int], float]]
Returns the edge data associated with the edge (node1, node2).

Parameters
node1: int

The index of the first node

node2: int
The index of the second node

Returns
dict

A dictionary with keys fault_ids, weight and error_probability, and values giving the re-
spective edge attributes
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has_boundary_edge(node: int)→ bool
Returns True if the boundary edge (node,) is in the graph. Note: this method does not check if node is
connected to a boundary node in Matching.boundary; it only checks if node is connected to the virtual
boundary node (i.e. whether there is a boundary edge (node,) present).

Parameters
node: int

The index of the node

Returns
bool

True if the boundary edge (node,) is present, otherwise False.

has_edge(node1: int, node2: int)→ bool
Returns True if edge (node1, node2) is in the graph.

Parameters
node1: int

The index of the first node

node2: int
The index of the second node

Returns
bool

True if the edge (node1, node2) is in the graph, otherwise False.

load_from_check_matrix(check_matrix: Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]]
= None, weights: Optional[Union[float, ndarray, List[float]]] = None,
error_probabilities: Optional[Union[float, ndarray, List[float]]] = None,
repetitions: Optional[int] = None, timelike_weights: Optional[Union[float,
ndarray, List[float]]] = None, measurement_error_probabilities:
Optional[Union[float, ndarray, List[float]]] = None, *, faults_matrix:
Optional[Union[csc_matrix, spmatrix, ndarray, List[List[int]]]] = None,
merge_strategy: str = 'smallest-weight', use_virtual_boundary_node: bool =
False, **kwargs)→ None

Load a matching graph from a check matrix

Parameters
check_matrix

[scipy.csc_matrix or numpy.ndarray or List[List[int]]] The quantum code to be decoded
with minimum-weight perfect matching, given as a binary check matrix (scipy sparse ma-
trix or numpy.ndarray)

weights
[float or numpy.ndarray, optional] If check_matrix is given as a scipy or numpy array,
weights gives the weights of edges in the matching graph corresponding to columns of
check_matrix. If weights is a numpy.ndarray, it should be a 1D array with length equal
to check_matrix.shape[1]. If weights is a float, it is used as the weight for all edges cor-
responding to columns of check_matrix. By default None, in which case all weights are
set to 1.0 This argument was renamed from spacelike_weights in PyMatching v2.0, but
spacelike_weights is still accepted in place of weights for backward compatibility.

error_probabilities
[float or numpy.ndarray, optional] The probabilities with which an error occurs on each
edge associated with a column of check_matrix. If a single float is given, the same error
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probability is used for each column. If a numpy.ndarray of floats is given, it must have a
length equal to the number of columns in check_matrix. This parameter is only needed for
the Matching.add_noise method, and not for decoding. By default None

repetitions
[int, optional] The number of times the stabiliser measurements are repeated, if the mea-
surements are noisy. By default None

timelike_weights
[float or numpy.ndarray, optional] If repetitions>1, timelike_weights gives the weight of
timelike edges. If a float is given, all timelike edges weights are set to the same value.
If a numpy array of size (check_matrix.shape[0],) is given, the edge weight for each ver-
tical timelike edge associated with the i`th check (row) of `check_matrix is set to time-
like_weights[i]. By default None, in which case all timelike weights are set to 1.0

measurement_error_probabilities
[float or numpy.ndarray, optional] If repetitions>1, gives the probability of a measurement
error to be used for the add_noise method. If a float is given, all measurement errors are
set to the same value. If a numpy array of size (check_matrix.shape[0],) is given, the
error probability for each vertical timelike edge associated with the i`th check (row) of
`check_matrix is set to measurement_error_probabilities[i]. This argument can also be
given using the keyword argument measurement_error_probability to maintain backward
compatibility with previous versions of Pymatching. By default None

faults_matrix: `scipy.csc_matrix` or `numpy.ndarray` or List[List[int]], optional
A binary array of faults, which can be used to set the fault_ids for each edge in the con-
structed matching graph. The fault_ids attribute of the edge corresponding to column j
of check_matrix includes fault id i if and only if faults[i,j]==1. Therefore, the number
of columns in faults must match the number of columns in check_matrix. By default,
faults is just set to the identity matrix, in which case the edge corresponding to column
j of check_matrix has fault_ids={j}. As an example, if check_matrix corresponds to the X
check matrix of a CSS stabiliser code, then you could set faults to the X logical operators:
in this case the output of Matching.decode will be a binary array correction where correc-
tion[i]==1 if the decoder predicts that the logical operator corresponding to row i of faults
was flipped, given the observed syndrome.

merge_strategy: str, optional
Which strategy to use when adding an edge (node1, node2) that is already in the graph. The
available options are “disallow”, “independent”, “smallest-weight”, “keep-original” and
“replace”. “disallow” raises a ValueError if the edge (node1, node2) is already present.
The “independent” strategy assumes that the existing edge (node1, node2) and the edge
being added represent independent error mechanisms, and they are merged into a new edge
with updated weights and error_probabilities accordingly (it is assumed that each weight
represents the log-likelihood ratio log((1-p)/p) where p is the error_probability and where
the natural logarithm is used. The fault_ids associated with the existing edge are kept
only, since the code has distance 2 if parallel edges have different fault_ids anyway). The
“smallest-weight” strategy keeps only the new edge if it has a smaller weight than the
existing edge, otherwise the graph is left unchanged. The “keep-original” strategy keeps
only the existing edge, and ignores the edge being added. The “replace” strategy always
keeps the edge being added, replacing the existing edge. By default, “smallest-weight”

use_virtual_boundary_node: bool, optional
This option determines how columns are handled if they contain only a single 1 (rep-
resenting a boundary edge). Consider a column contains a single 1 at row index i. If
use_virtual_boundary_node=False, then this column will be handled by adding an edge
(i, check_matrix.shape[0]), and marking the node check_matrix.shape[0] as a bound-
ary node with Matching.set_boundary(check_matrix.shape[0]). The resulting graph will
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contain check_matrix.shape[0]+1 nodes, the largest of which is the boundary node. If
use_virtual_boundary_node=True then instead the boundary is a virtual node, and this
column is handled with Matching.add_boundary_edge(i, . . . ). The resulting graph will
contain check_matrix.shape[0] nodes, and there is no boundary node. Both options are
handled identically by the decoder, although use_virtual_boundary_node=True is recom-
mended since it is simpler (with a one-to-one correspondence between nodes and rows of
check_matrix), and is also slightly more efficient. By default, False (for backward compat-
ibility)

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.load_from_check_matrix([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]])
>>> m
<pymatching.Matching object with 3 detectors, 1 boundary node, and 4 edges>

Matching objects can also be initialised from a sparse scipy matrix: >>> import pymatching >>> from
scipy.sparse import csc_matrix >>> check_matrix = csc_matrix([[1, 1, 0], [0, 1, 1]]) >>> m = pymatch-
ing.Matching() >>> m.load_from_check_matrix(check_matrix) >>> m <pymatching.Matching object with
2 detectors, 1 boundary node, and 3 edges>

load_from_networkx(graph: Graph, *, min_num_fault_ids: Optional[int] = None)→ None
Load a matching graph from a NetworkX graph into a pymatching.Matching object

Parameters
graph

[networkx.Graph] Each edge in the NetworkX graph can have optional attributes
fault_ids, weight and error_probability. fault_ids should be an int or a set
of ints. Each fault id corresponds to a self-inverse fault that is flipped when the corre-
sponding edge is flipped. These self-inverse faults could correspond to physical Pauli er-
rors (physical frame changes) or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a
Stim detector error model). The fault_ids attribute determines how the solution is out-
put via pymatching.Matching.decode: the binary correction array has length pymatch-
ing.Matching.num_fault_ids, and correction[i] is 1 if and only if an odd number of edges
in the MWPM solution have i in their fault_ids attribute. The fault_ids attribute was pre-
viously named qubit_id in an earlier version of PyMatching, and qubit_id is still accepted
instead of fault_ids in order to maintain backward compatibility. Each weight attribute
should be a non-negative float. If every edge is assigned an error_probability between
zero and one, then the add_noise method can be used to simulate noise and flip edges
independently in the graph.

min_num_fault_ids: int
Sets the minimum number of fault ids in the matching graph. Let max_id be the maxi-
mum fault id assigned to any of the edges in the graph. Then setting this argument will
ensure that Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Match-
ing.num_fault_ids sets the length of the correction array output by Matching.decode.
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Examples

>>> import pymatching
>>> import networkx as nx
>>> import math
>>> g = nx.Graph()
>>> g.add_edge(0, 1, fault_ids=0, weight=math.log((1-0.1)/0.1), error_
→˓probability=0.1)
>>> g.add_edge(1, 2, fault_ids=1, weight=math.log((1-0.15)/0.15), error_
→˓probability=0.15)
>>> g.nodes[0]['is_boundary'] = True
>>> g.nodes[2]['is_boundary'] = True
>>> m = pymatching.Matching(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>

load_from_retworkx(graph: PyGraph, *, min_num_fault_ids: Optional[int] = None)→ None
Load a matching graph from a retworkX graph

Parameters
graph

[retworkx.PyGraph] Each edge in the retworkx graph can have dictionary payload with
keys fault_ids, weight and error_probability. fault_ids should be an int or a
set of ints. Each fault id corresponds to a self-inverse fault that is flipped when the cor-
responding edge is flipped. These self-inverse faults could correspond to physical Pauli
errors (physical frame changes) or to the logical observables that are flipped by the fault
(a logical frame change, equivalent to an obersvable ID in an error instruction in a Stim
detector error model). The fault_ids attribute was previously named qubit_id in an ear-
lier version of PyMatching, and qubit_id is still accepted instead of fault_ids in order to
maintain backward compatibility. Each weight attribute should be a non-negative float.
If every edge is assigned an error_probability between zero and one, then the add_noise
method can be used to simulate noise and flip edges independently in the graph.

min_num_fault_ids: int
Sets the minimum number of fault ids in the matching graph. Let max_id be the maxi-
mum fault id assigned to any of the edges in the graph. Then setting this argument will
ensure that Matching.num_fault_ids=max(min_num_fault_ids, max_id). Note that Match-
ing.num_fault_ids sets the length of the correction array output by Matching.decode.

Examples

>>> import pymatching
>>> import retworkx as rx
>>> import math
>>> g = rx.PyGraph()
>>> matching = g.add_nodes_from([{} for _ in range(3)])
>>> edge_a =g.add_edge(0, 1, dict(fault_ids=0, weight=math.log((1-0.1)/0.1),␣
→˓error_probability=0.1))
>>> edge_b = g.add_edge(1, 2, dict(fault_ids=1, weight=math.log((1-0.15)/0.15),␣
→˓error_probability=0.15))
>>> g[0]['is_boundary'] = True
>>> g[2]['is_boundary'] = True

(continues on next page)
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(continued from previous page)

>>> m = pymatching.Matching(g)
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>

property num_detectors: int

The number of detectors in the matching graph. A detector is a node that can have a non-trivial syndrome
(i.e. it is a node that is not a boundary node).

Returns
int

The number of detectors

property num_edges: int

The number of edges in the matching graph

Returns
int

The number of edges

property num_fault_ids: int

The number of fault IDs defined in the matching graph

Returns
int

Number of fault IDs

property num_nodes: int

The number of nodes in the matching graph

Returns
int

The number of nodes

set_boundary_nodes(nodes: Set[int])→ None
Set boundary nodes in the matching graph. This defines the nodes in nodes to be boundary nodes.

Parameters
nodes: set[int]

The IDs of the nodes to be set as boundary nodes

Examples

>>> import pymatching
>>> m = pymatching.Matching()
>>> m.add_edge(0, 1)
>>> m.add_edge(1, 2)
>>> m.set_boundary_nodes({0, 2})
>>> m.boundary
{0, 2}
>>> m
<pymatching.Matching object with 1 detector, 2 boundary nodes, and 2 edges>
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to_networkx()→ Graph
Convert to NetworkX graph Returns a NetworkX graph corresponding to the matching graph. Each edge
has attributes fault_ids, weight and error_probability and each node has the attribute is_boundary.

Returns
NetworkX.Graph

NetworkX Graph corresponding to the matching graph

to_retworkx()→ PyGraph
Convert to retworkx graph Returns a retworkx graph object corresponding to the matching graph. Each edge
payload is a dict with keys fault_ids, weight and error_probability and each node has a dict payload with
the key is_boundary and the value is a boolean.

Returns
retworkx.PyGraph

retworkx graph corresponding to the matching graph

5.2.2 Command line interface

pymatching.cli()

main(*, command_line_args: List[str]) -> int

Runs the command line tool version of pymatching with the given arguments.

5.2.3 Random number generator

pymatching.set_seed(seed: int)→ None
Sets the seed of the random number generator

Parameters
seed: int

The seed for the random number generator (must be non-negative)

Examples

>>> import pymatching
>>> pymatching.set_seed(10)

pymatching.randomize()→ None
Choose a random seed using std::random_device

5.2. Python API Documentation 45



PyMatching, Release 2.1.0

Examples

>>> import pymatching
>>> pymatching.randomize()

pymatching.rand_float(from: float, to: float)→ float
Generate a floating point number chosen uniformly at random over the interval between from and to

Parameters
from: float

Smallest float that can be drawn from the distribution

to: float
Largest float that can be drawn from the distribution

Returns
float

The random float
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